We present the analytic form of the two-loop five-gluon scattering amplitudes in QCD for a complete set of independent helicity configurations of external gluons. These include the first analytic results for five-point two-loop amplitudes relevant for the computation of next-to-next-to-leading-order QCD corrections at hadron colliders. The results were obtained by reconstructing analytic expressions from numerical evaluations. The complexity of the computation is reduced by exploiting physical and analytical properties of the amplitudes, employing a minimal basis of so-called pentagon functions that have recently been classified.
We present the analytic form of all leading-color two-loop five-parton helicity amplitudes in QCD. The results are analytically reconstructed from exact numerical evaluations over finite fields. Combining a judicious choice of variables with a new approach to the treatment of particle states in $D$ dimensions for the numerical evaluation of amplitudes, we obtain the analytic expressions with a modest computational effort. Their systematic simplification using multivariate partial-fraction decomposition leads to a particularly compact form. Our results provide all two-loop amplitudes required for the calculation of next-to-next-to-leading order QCD corrections to the production of three jets at hadron colliders in the leading-color approximation.
We present a compact analytic expression for the leading colour two-loop five-gluon amplitude in Yang-Mills theory with a single negative helicity and four positive helicities. The analytic result is reconstructed from numerical evaluations over finite fields. The numerical method combines integrand reduction, integration-by-parts identities and Laurent expansion into a basis of pentagon functions to compute the coefficients directly from six-dimensional generalised unitarity cuts.
We review the current state-of-the-art in integrand level reduction for five-point scattering amplitudes at two loops in QCD. We present some benchmark results for the evaluation of the leading colour two-loop five-gluon amplitudes in the physical region as well as the partonic channels for two quarks and three gluons and four quarks and one gluon.
We compute a complete set of independent leading-color two-loop five-parton amplitudes in QCD. These constitute a fundamental ingredient for the next-to-next-to-leading order QCD corrections to three-jet production at hadron colliders. We show how to consistently consider helicity amplitudes with external fermions in dimensional regularization, allowing the application of a numerical variant of the unitarity approach. Amplitudes are computed by exploiting a decomposition of the integrand into master and surface terms that is independent of the parton type. Master integral coefficients are numerically computed in either finite-field or floating-point arithmetic and combined with known analytic master integrals. We recompute two-loop leading-color four-parton amplitudes as a check of our implementation. Results are presented for all independent four- and five-parton processes including contributions with massless closed fermion loops.
The rational parts of 5-gluon one-loop amplitudes are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We found complete agreement with the previously well-known results of Bern, Dixon and Kosower obtained by using the string theory method. Intermediate results for some combinations of Feynman diagrams are presented in order to show the efficiency of the method and the local cancellation between different contributions.