No Arabic abstract
Description logics (DLs) are well-known knowledge representation formalisms focused on the representation of terminological knowledge. Due to their first-order semantics, these languages (in their classical form) are not suitable for representing and handling uncertainty. A probabilistic extension of a light-weight DL was recently proposed for dealing with certain knowledge occurring in uncertain contexts. In this paper, we continue that line of research by introducing the Bayesian extension BALC of the propositionally closed DL ALC. We present a tableau-based procedure for deciding consistency, and adapt it to solve other probabilistic, contextual, and general inferences in this logic. We also show that all these problems remain ExpTime-complete, the same as reasoning in the underlying classical ALC.
The paper introduces a knowledge representation language that combines the event calculus with description logic in a logic programming framework. The purpose is to provide the user with an expressive language for modelling and analysing systems that evolve over time. The approach is exemplified with the logic programming language as implemented in the Fusemate system. The paper extends Fusemates rule language with a weakly DL-safe interface to the description logic $cal ALCIF$ and adapts the event calculus to this extended language. This way, time-stamped ABoxes can be manipulated as fluents in the event calculus. All that is done in the frame of Fusemates concept of stratification by time. The paper provides conditions for soundness and completeness where appropriate. Using an elaborated example it demonstrates the interplay of the event calculus, description logic and logic programming rules for computing possible models as plausible explanations of the current state of the modelled system.
In this paper, we propose a new logic for expressing and reasoning about probabilistic hyperproperties. Hyperproperties characterize the relation between different independent executions of a system. Probabilistic hyperproperties express quantitative dependencies between such executions. The standard temporal logics for probabilistic systems, i.e., PCTL and PCTL* can refer only to a single path at a time and, hence, cannot express many probabilistic hyperproperties of interest. The logic proposed in this paper, HyperPCTL, adds explicit and simultaneous quantification over multiple traces to PCTL. Such quantification allows expressing probabilistic hyperproperties. A model checking algorithm for the proposed logic is also given for discrete-time Markov chains.
Description logics are knowledge representation languages that have been designed to strike a balance between expressivity and computational tractability. Many different description logics have been developed, and numerous computational problems for these logics have been studied for their computational complexity. However, essentially all complexity analyses of reasoning problems for description logics use the one-dimensional framework of classical complexity theory. The multi-dimensional framework of parameterized complexity theory is able to provide a much more detailed image of the complexity of reasoning problems. In this paper we argue that the framework of parameterized complexity has a lot to offer for the complexity analysis of description logic reasoning problems---when one takes a progressive and forward-looking view on parameterized complexity tools. We substantiate our argument by means of three case studies. The first case study is about the problem of concept satisfiability for the logic ALC with respect to nearly acyclic TBoxes. The second case study concerns concept satisfiability for ALC concepts parameterized by the number of occurrences of union operators and the number of occurrences of full existential quantification. The third case study offers a critical look at data complexity results from a parameterized complexity point of view. These three case studies are representative for the wide range of uses for parameterized complexity methods for description logic problems.
Description Logics (DLs) are a family of languages used for the representation and reasoning on the knowledge of an application domain, in a structured and formal manner. In order to achieve this objective, several provers, such as RACER and FaCT++, have been implemented, but these provers themselves have not been yet certified. In order to ensure the soundness of derivations in these DLs, it is necessary to formally verify the deductions applied by these reasoners. Formal methods offer powerful tools for the specification and verification of proof procedures, among them there are methods for proving properties such as soundness, completeness and termination of a proof procedure. In this paper, we present the definition of a proof procedure for the Description Logic ALC, based on a semantic tableau method. We ensure validity of our prover by proving its soundness, completeness and termination properties using Isabelle proof assistant. The proof proceeds in two phases, first by establishing these properties on an abstract level, and then by instantiating them for an implementation based on lists.
We present a ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic $dlssx$ ($shdlssx$, for short). Our application solves the main TBox and ABox reasoning problems for $shdlssx$. In particular, it solves the consistency problem for $shdlssx$-knowledge bases represented in set-theoretic terms, and a generalization of the emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of $shdlssx$-knowledge bases (see cite{cilc17}), is implemented in textsf{C++}. It supports $shdlssx$-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).