Do you want to publish a course? Click here

A Parameterized Complexity View on Description Logic Reasoning

146   0   0.0 ( 0 )
 Added by Ronald de Haan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Description logics are knowledge representation languages that have been designed to strike a balance between expressivity and computational tractability. Many different description logics have been developed, and numerous computational problems for these logics have been studied for their computational complexity. However, essentially all complexity analyses of reasoning problems for description logics use the one-dimensional framework of classical complexity theory. The multi-dimensional framework of parameterized complexity theory is able to provide a much more detailed image of the complexity of reasoning problems. In this paper we argue that the framework of parameterized complexity has a lot to offer for the complexity analysis of description logic reasoning problems---when one takes a progressive and forward-looking view on parameterized complexity tools. We substantiate our argument by means of three case studies. The first case study is about the problem of concept satisfiability for the logic ALC with respect to nearly acyclic TBoxes. The second case study concerns concept satisfiability for ALC concepts parameterized by the number of occurrences of union operators and the number of occurrences of full existential quantification. The third case study offers a critical look at data complexity results from a parameterized complexity point of view. These three case studies are representative for the wide range of uses for parameterized complexity methods for description logic problems.



rate research

Read More

In this paper we introduce a computational-level model of theory of mind (ToM) based on dynamic epistemic logic (DEL), and we analyze its computational complexity. The model is a special case of DEL model checking. We provide a parameterized complexity analysis, considering several aspects of DEL (e.g., number of agents, size of preconditions, etc.) as parameters. We show that model checking for DEL is PSPACE-hard, also when restricted to single-pointed models and S5 relations, thereby solving an open problem in the literature. Our approach is aimed at formalizing current intractability claims in the cognitive science literature regarding computational models of ToM.
73 - Peter Baumgartner 2021
The paper introduces a knowledge representation language that combines the event calculus with description logic in a logic programming framework. The purpose is to provide the user with an expressive language for modelling and analysing systems that evolve over time. The approach is exemplified with the logic programming language as implemented in the Fusemate system. The paper extends Fusemates rule language with a weakly DL-safe interface to the description logic $cal ALCIF$ and adapts the event calculus to this extended language. This way, time-stamped ABoxes can be manipulated as fluents in the event calculus. All that is done in the frame of Fusemates concept of stratification by time. The paper provides conditions for soundness and completeness where appropriate. Using an elaborated example it demonstrates the interplay of the event calculus, description logic and logic programming rules for computing possible models as plausible explanations of the current state of the modelled system.
The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problems fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: for every graph property P expressible by a first order-logic formula phiin Sigma_3, that is, of the form phi=exists x_1exists x_2cdots exists x_r forall y_1forall y_2cdots forall y_s exists z_1exists z_2cdots exists z_t psi, where psi is a quantifier-free first-order formula, checking whether the elimination distance of a graph to P does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Sigma_3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: there are formulas phiin Pi_3, for which computing elimination distance is W[2]-hard.
122 - C. A. Middelburg 2020
This paper is concerned with the first-order paraconsistent logic LPQ$^{supset,mathsf{F}}$. A sequent-style natural deduction proof system for this logic is presented and, for this proof system, both a model-theoretic justification and a logical justification by means of an embedding into first-order classical logic is given. For no logic that is essentially the same as LPQ$^{supset,mathsf{F}}$, a natural deduction proof system is currently available in the literature. The given embedding provides both a classical-logic explanation of this logic and a logical justification of its proof system. The major properties of LPQ$^{supset,mathsf{F}}$ are also treated.
107 - Georg Moser 2009
We study the derivational complexity induced by the dependency pair method, enhanced with standard refinements. We obtain upper bounds on the derivational complexity induced by the dependency pair method in terms of the derivational complexity of the base techniques employed. In particular we show that the derivational complexity induced by the dependency pair method based on some direct technique, possibly refined by argument filtering, the usable rules criterion, or dependency graphs, is primitive recursive in the derivational complexity induced by the direct method. This implies that the derivational complexity induced by a standard application of the dependency pair method based on traditional termination orders like KBO, LPO, and MPO is exactly the same as if those orders were applied as the only termination technique.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا