Do you want to publish a course? Click here

A Qualitative Evaluation of User Preference for Link-based vs. Text-based Recommendations of Wikipedia Articles

145   0   0.0 ( 0 )
 Added by Malte Ostendorff
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Literature recommendation systems (LRS) assist readers in the discovery of relevant content from the overwhelming amount of literature available. Despite the widespread adoption of LRS, there is a lack of research on the user-perceived recommendation characteristics for fundamentally different approaches to content-based literature recommendation. To complement existing quantitative studies on literature recommendation, we present qualitative study results that report on users perceptions for two contrasting recommendation classes: (1) link-based recommendation represented by the Co-Citation Proximity (CPA) approach, and (2) text-based recommendation represented by Lucenes MoreLikeThis (MLT) algorithm. The empirical data analyzed in our study with twenty users and a diverse set of 40 Wikipedia articles indicate a noticeable difference between text- and link-based recommendation generation approaches along several key dimensions. The text-based MLT method receives higher satisfaction ratings in terms of user-perceived similarity of recommended articles. In contrast, the CPA approach receives higher satisfaction scores in terms of diversity and serendipity of recommendations. We conclude that users of literature recommendation systems can benefit most from hybrid approaches that combine both link- and text-based approaches, where the users information needs and preferences should control the weighting for the approaches used. The optimal weighting of multiple approaches used in a hybrid recommendation system is highly dependent on a users shifting needs.



rate research

Read More

Language models that utilize extensive self-supervised pre-training from unlabeled text, have recently shown to significantly advance the state-of-the-art performance in a variety of language understanding tasks. However, it is yet unclear if and how these recent models can be harnessed for conducting text-based recommendations. In this work, we introduce RecoBERT, a BERT-based approach for learning catalog-specialized language models for text-based item recommendations. We suggest novel training and inference procedures for scoring similarities between pairs of items, that dont require item similarity labels. Both the training and the inference techniques were designed to utilize the unlabeled structure of textual catalogs, and minimize the discrepancy between them. By incorporating four scores during inference, RecoBERT can infer text-based item-to-item similarities more accurately than other techniques. In addition, we introduce a new language understanding task for wine recommendations using similarities based on professional wine reviews. As an additional contribution, we publish annotated recommendations dataset crafted by human wine experts. Finally, we evaluate RecoBERT and compare it to various state-of-the-art NLP models on wine and fashion recommendations tasks.
Many recommendation algorithms are available to digital library recommender system operators. The effectiveness of algorithms is largely unreported by way of online evaluation. We compare a standard term-based recommendation approach to two promising approaches for related-article recommendation in digital libraries: document embeddings, and keyphrases. We evaluate the consistency of their performance across multiple scenarios. Through our recommender-as-a-service Mr. DLib, we delivered 33.5M recommendations to users of Sowiport and Jabref over the course of 19 months, from March 2017 to October 2018. The effectiveness of the algorithms differs significantly between Sowiport and Jabref (Wilcoxon rank-sum test; p < 0.05). There is a ~400% difference in effectiveness between the best and worst algorithm in both scenarios separately. The best performing algorithm in Sowiport (terms) is the worst performing in Jabref. The best performing algorithm in Jabref (keyphrases) is 70% worse in Sowiport, than Sowiport`s best algorithm (click-through rate; 0.1% terms, 0.03% keyphrases).
176 - Dou Hu , Lingwei Wei , Wei Zhou 2021
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve over time dynamically and each preference has its own evolving track. However, most previous works neglect the evolving trend of preferences and can be easily disturbed by the effect of preference drifting. In this paper, we propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process by a two-stage retrieval from historical contexts. Specifically, the first-stage process integrates relevant behaviors according to recent items. Then, the second-stage process models the preference evolving trajectory over time dynamically and infer rich preferences. The process can strengthen the effect of relevant sequential behaviors during the preference evolution and weaken the disturbance from preference drifting. Extensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed model.
We introduce the first living lab for scholarly recommender systems. This lab allows recommender-system researchers to conduct online evaluations of their novel algorithms for scholarly recommendations, i.e., recommendations for research papers, citations, conferences, research grants, etc. Recommendations are delivered through the living labs API to platforms such as reference management software and digital libraries. The living lab is built on top of the recommender-system as-a-service Mr. DLib. Current partners are the reference management software JabRef and the CORE research team. We present the architecture of Mr. DLibs living lab as well as usage statistics on the first sixteen months of operating it. During this time, 1,826,643 recommendations were delivered with an average click-through rate of 0.21%.
111 - Matus Medo , Giulio Cimini 2016
Using bibliometric data artificially generated through a model of citation dynamics calibrated on empirical data, we compare several indicators for the scientific impact of individual researchers. The use of such a controlled setup has the advantage of avoiding the biases present in real databases, and allows us to assess which aspects of the model dynamics and which traits of individual researchers a particular indicator actually reflects. We find that the simple citation average performs well in capturing the intrinsic scientific ability of researchers, whatever the length of their career. On the other hand, when productivity complements ability in the evaluation process, the notorious $h$ and $g$ indices reveal their potential, yet their normalized variants do not always yield a fair comparison between researchers at different career stages. Notably, the use of logarithmic units for citation counts allows us to build simple indicators with performance equal to that of $h$ and $g$. Our analysis may provide useful hints for a proper use of bibliometric indicators. Additionally, our framework can be extended by including other aspects of the scientific production process and citation dynamics, with the potential to become a standard tool for the assessment of impact metrics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا