Do you want to publish a course? Click here

Nonlinear Young differential equations: a review

153   0   0.0 ( 0 )
 Added by Lucio Galeati
 Publication date 2020
  fields
and research's language is English
 Authors Lucio Galeati




Ask ChatGPT about the research

Nonlinear Young integrals have been first introduced in [Catellier,Gubinelli, SPA 2016] and provide a natural generalisation of classical Young ones, but also a versatile tool in the pathwise study of regularisation by noise phenomena. We present here a self-contained account of the theory, focusing on wellposedness results for abstract nonlinear Young differential equations, together with some new extensions; convergence of numerical schemes and nonlinear Young PDEs are also treated. Most results are presented for general (possibly infinite dimensional) Banach spaces and without using compactness assumptions, unless explicitly stated.



rate research

Read More

This paper concerns with a mathematical modelling of biological experiments, and its influence on our lives. Fractional hybrid iterative differential equations are equations that interested in mathematical model of biology. Our technique is based on the Dhage fixed point theorem. This tool describes mixed solutions by monotone iterative technique in the nonlinear analysis. This method is used to combine two solutions: lower and upper. It is shown an approximate result for the hybrid fractional differential equations iterative in the closed assembly formed by the lower and upper solutions.
151 - Shingo Kamimoto 2016
The principal aim of this article is to establish an iteration method on the space of resurgent functions. We discuss endless continuability of iterated convolution products of resurgent functions and derive their estimates developing the method in arXiv:1610.05453. Using the estimates, we show the resurgence of formal series solutions of nonlinear differential and difference equations.
We investigate local fractional nonlinear Riccati differential equations (LFNRDE) by transforming them into local fractional linear ordinary differential equations. The case of LFNRDE with constant coefficients is considered and non-differentiable solutions for special cases obtained.
166 - Anatoly N. Kochubei 2019
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particular, it was found to possess such a right inverse $I^alpha$ that the change of an unknown function $u=I^alpha v$ reduces the Cauchy problem for a linear equation with $D^alpha$ (for radial functions) to an integral equation whose properties resemble those of classical Volterra equations. In other words, we found, in the framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In the present paper, we study nonlinear equations of this kind, find conditions of their local and global solvability.
When studying boundary value problems for some partial differential equations arising in applied mathematics, we often have to study the solution of a system of partial differential equations satisfied by hypergeometric functions and find explicit linearly independent solutions for the system. In this study, we construct self-similar solutions of some model degenerate partial differential equations of the second, third, and fourth order. These self-similar solutions are expressed in terms of hypergeometric functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا