Do you want to publish a course? Click here

Resurgent functions and nonlinear systems of differential and difference equations

152   0   0.0 ( 0 )
 Added by Shingo Kamimoto
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The principal aim of this article is to establish an iteration method on the space of resurgent functions. We discuss endless continuability of iterated convolution products of resurgent functions and derive their estimates developing the method in arXiv:1610.05453. Using the estimates, we show the resurgence of formal series solutions of nonlinear differential and difference equations.



rate research

Read More

166 - Anatoly N. Kochubei 2019
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particular, it was found to possess such a right inverse $I^alpha$ that the change of an unknown function $u=I^alpha v$ reduces the Cauchy problem for a linear equation with $D^alpha$ (for radial functions) to an integral equation whose properties resemble those of classical Volterra equations. In other words, we found, in the framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In the present paper, we study nonlinear equations of this kind, find conditions of their local and global solvability.
152 - Lucio Galeati 2020
Nonlinear Young integrals have been first introduced in [Catellier,Gubinelli, SPA 2016] and provide a natural generalisation of classical Young ones, but also a versatile tool in the pathwise study of regularisation by noise phenomena. We present here a self-contained account of the theory, focusing on wellposedness results for abstract nonlinear Young differential equations, together with some new extensions; convergence of numerical schemes and nonlinear Young PDEs are also treated. Most results are presented for general (possibly infinite dimensional) Banach spaces and without using compactness assumptions, unless explicitly stated.
145 - Ilia Krasikov 2002
We shall give bounds on the spacing of zeros of certain functions belonging to the Laguerre-Polya class and satisfying a second order differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Laguerre and Jacobi polinomials, which are uniform in all the parameters.
71 - Masatoshi Noumi 2016
We investigate the structure of $tau$-functions for the elliptic difference Painleve equation of type $E_8$. Introducing the notion of ORG $tau$-functions for the $E_8$ lattice, we construct some particular solutions which are expressed in terms of elliptic hypergeometric integrals. Also, we discuss how this construction is related to the framework of lattice $tau$-functions associated with the configuration of generic nine points in the projective plane.
We comprehensively study admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizing these systems. For each class from the constructed chain of nested gauged classes of such systems, we single out its singular subclass, which appears to consist of systems being similar to the elementary (free particle) system whereas the regular subclass is the complement of the singular one. This allows us to exhaustively describe the equivalence groupoids of the above classes as well as of their singular and regular subclasses. Applying various algebraic techniques, we establish principal properties of Lie symmetries of the systems under consideration and outline ways for completely classifying these symmetries. In particular, we compute the sharp lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by systems from each of the above classes and subclasses. We also show how equivalence transformations and Lie symmetries can be used for reduction of order of such systems and their integration. As an illustrative example of using the theory developed, we solve the complete group classification problems for all these classes in the case of two dependent variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا