No Arabic abstract
Using tensor network states to unravel the physics of quantum spin liquids in minimal, yet generic microscopic spin or electronic models remains notoriously challenging. A prominent open question concerns the nature of the insulating ground state of two-dimensional half-filled Hubbard-type models on the triangular lattice in the vicinity of the Mott metal-insulator transition, a regime which can be approximated microscopically by a spin-1/2 Heisenberg model supplemented with additional ring-exchange interactions. Using a novel and efficient state preparation technique whereby we initialize full density matrix renormalization group (DMRG) calculations with highly entangled Gutzwiller-projected Fermi surface trial wave functions, we show -- contrary to previous works -- that the simplest triangular lattice $J$-$K$ spin model with four-site ring exchange likely does not harbor a fully gapless U(1) spinon Fermi surface (spin Bose metal) phase on four- and six-leg wide ladders. Our methodology paves the way to fully resolve with DMRG other controversial problems in the fields of frustrated quantum magnetism and strongly correlated electrons.
We propose a novel quantum spin liquid state that can explain many of the intriguing experimental properties of the low-temperature phase of the organic spin liquid candidate materials. This state of paired fermionic spinons preserves all symmetries of the system, and it has a gapless excitation spectrum with quadratic bands that touch at momentum ~ k = 0. This quadratic band touching is protected by the symmetry of the system. Using variational Monte Carlo techniques, we show that this state has highly competitive energy in the triangular lattice Heisenberg model supplemented with a realistically large ring-exchange term.
While general quantum many-body systems require exponential resources to be simulated on a classical computer, systems of non-interacting fermions can be simulated exactly using polynomially scaling resources. Such systems may be of interest in their own right, but also occur as effective models in numerical methods for interacting systems, such as Hartree-Fock, density functional theory, and many others. Often it is desirable to solve systems of many thousand constituent particles, rendering these simulations computationally costly despite their polynomial scaling. We demonstrate how this scaling can be improved by adapting methods based on matrix product states, which have been enormously successful for low-dimensional interacting quantum systems, to the case of free fermions. Compared to the case of interacting systems, our methods achieve an exponential speedup in the entanglement entropy of the state. We demonstrate their use to solve systems of up to one million sites with an effective MPS bond dimension of 10^15.
We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of hole doping $delta$ in both the strong and intermediate coupling limit. Using the density matrix renormalization group (DMRG) method, at light hole doping $deltalesssim 10%$, we find a significant difference between strong and intermediate couplings. Notably, at intermediate coupling an unusual metallic state emerges, with short ranged spin correlations but long ranged spin-chirality order. Moreover, no clear Fermi surface or wave-vector is observed. These features disappear on increasing interaction strength or on further doping. At strong coupling, the 120 degree magnetic order of the insulating magnet persists for light doping, and produces hole pockets with a well defined Fermi surface. On further doping, $delta approx 10%sim 20%$ SDW order and coherent hole Fermi pockets are found at both strong and intermediate coupling. At even higher doping $delta gtrsim 20%$, the SDW order is suppressed and the spin-singlet Cooper pair correlations are simultaneously enhanced. We interpret this as the onset of superconductivity on suppressing magnetic order. We also briefly comment on the strong particle hole asymmetry of the model, and contrast electron versus hole doping.
We quantify how well matrix product states approximate exact ground states of 1-D quantum spin systems as a function of the number of spins and the entropy of blocks of spins. We also investigate the convex set of local reduced density operators of translational invariant systems. The results give a theoretical justification for the high accuracy of renormalization group algorithms, and justifies their use even in the case of critical systems.
We prove that ground states of gapped local Hamiltonians on an infinite spin chain can be efficiently approximated by matrix product states with a bond dimension which scales as D~(L-1)/epsilon, where any local quantity on L consecutive spins is approximated to accuracy epsilon.