Do you want to publish a course? Click here

Robust Trajectory Optimization over Uncertain Terrain with Stochastic Complementarity

288   0   0.0 ( 0 )
 Added by Luke Drnach
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Trajectory optimization with contact-rich behaviors has recently gained attention for generating diverse locomotion behaviors without pre-specified ground contact sequences. However, these approaches rely on precise models of robot dynamics and the terrain and are susceptible to uncertainty. Recent works have attempted to handle uncertainties in the system model, but few have investigated uncertainty in contact dynamics. In this study, we model uncertainty stemming from the terrain and design corresponding risk-sensitive objectives under the framework of contact-implicit trajectory optimization. In particular, we parameterize uncertainties from the terrain contact distance and friction coefficients using probability distributions and propose a corresponding expected residual minimization cost design approach. We evaluate our method in three simple robotic examples, including a legged hopping robot, and we benchmark one of our examples in simulation against a robust worst-case solution. We show that our risk-sensitive method produces contact-averse trajectories that are robust to terrain perturbations. Moreover, we demonstrate that the resulting trajectories converge to those generated by a traditional, non-robust method as the terrain model becomes more certain. Our study marks an important step towards a fully robust, contact-implicit approach suitable for deploying robots on real-world terrain.



rate research

Read More

We present a framework for bi-level trajectory optimization in which a systems dynamics are encoded as the solution to a constrained optimization problem and smooth gradients of this lower-level problem are passed to an upper-level trajectory optimizer. This optimization-based dynamics representation enables constraint handling, additional variables, and non-smooth forces to be abstracted away from the upper-level optimizer, and allows classical unconstrained optimizers to synthesize trajectories for more complex systems. We provide a path-following method for efficient evaluation of constrained dynamics and utilize the implicit-function theorem to compute smooth gradients of this representation. We demonstrate the framework by modeling systems from locomotion, aerospace, and manipulation domains including: acrobot with joint limits, cart-pole subject to Coulomb friction, Raibert hopper, rocket landing with thrust limits, and planar-push task with optimization-based dynamics and then optimize trajectories using iterative LQR.
This paper presents a novel approach using sensitivity analysis for generalizing Differential Dynamic Programming (DDP) to systems characterized by implicit dynamics, such as those modelled via inverse dynamics and variational or implicit integrators. It leads to a more general formulation of DDP, enabling for example the use of the faster recursive Newton-Euler inverse dynamics. We leverage the implicit formulation for precise and exact contact modelling in DDP, where we focus on two contributions: (1) Contact dynamics in acceleration level that enables high-order integration schemes; (2) Formulation using an invertible contact model in the forward pass and a closed form solution in the backward pass to improve the numerical resolution of contacts. The performance of the proposed framework is validated (1) by comparing implicit versus explicit DDP for the swing-up of a double pendulum, and (2) by planning motions for two tasks using a single leg model making multi-body contacts with the environment: standing up from ground, where a priori contact enumeration is challenging, and maintaining balance under an external perturbation.
This paper presents a novel methodology to model and optimize trajectories of a quadrupedal robot with spinal compliance to improve standing jump performance compared to quadrupeds with a rigid spine. We introduce an elastic model for a prismatic robotic spine that is actively preloaded and mechanically lock-enabled at initial and maximum length, and develop a constrained trajectory optimization method to co-optimize the elastic parameters and motion trajectories toward enhanced jumping distance. Results reveal that a less stiff spring is likely to facilitate jumping performance not as a direct propelling source but as a means to unleash more motor power for propelling by trading-off overall energy efficiency. We also visualize the impact of spring coefficients on the overall optimization routine from energetic perspectives to identify the suitable parameter region.
In this report, we study decentralized stochastic optimization to minimize a sum of smooth and strongly convex cost functions when the functions are distributed over a directed network of nodes. In contrast to the existing work, we use gradient tracking to improve certain aspects of the resulting algorithm. In particular, we propose the~textbf{texttt{S-ADDOPT}} algorithm that assumes a stochastic first-order oracle at each node and show that for a constant step-size~$alpha$, each node converges linearly inside an error ball around the optimal solution, the size of which is controlled by~$alpha$. For decaying step-sizes~$mathcal{O}(1/k)$, we show that~textbf{texttt{S-ADDOPT}} reaches the exact solution sublinearly at~$mathcal{O}(1/k)$ and its convergence is asymptotically network-independent. Thus the asymptotic behavior of~textbf{texttt{S-ADDOPT}} is comparable to the centralized stochastic gradient descent. Numerical experiments over both strongly convex and non-convex problems illustrate the convergence behavior and the performance comparison of the proposed algorithm.
This paper considers the problem of robot motion planning in a workspace with obstacles for systems with uncertain 2nd-order dynamics. In particular, we combine closed form potential-based feedback controllers with adaptive control techniques to guarantee the collision-free robot navigation to a predefined goal while compensating for the dynamic model uncertainties. We base our findings on sphere world-based configuration spaces, but extend our results to arbitrary star-shaped environments by using previous results on configuration space transformations. Moreover, we propose an algorithm for extending the control scheme to decentralized multi-robot systems. Finally, extensive simulation results verify the theoretical findings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا