No Arabic abstract
In this report, we study decentralized stochastic optimization to minimize a sum of smooth and strongly convex cost functions when the functions are distributed over a directed network of nodes. In contrast to the existing work, we use gradient tracking to improve certain aspects of the resulting algorithm. In particular, we propose the~textbf{texttt{S-ADDOPT}} algorithm that assumes a stochastic first-order oracle at each node and show that for a constant step-size~$alpha$, each node converges linearly inside an error ball around the optimal solution, the size of which is controlled by~$alpha$. For decaying step-sizes~$mathcal{O}(1/k)$, we show that~textbf{texttt{S-ADDOPT}} reaches the exact solution sublinearly at~$mathcal{O}(1/k)$ and its convergence is asymptotically network-independent. Thus the asymptotic behavior of~textbf{texttt{S-ADDOPT}} is comparable to the centralized stochastic gradient descent. Numerical experiments over both strongly convex and non-convex problems illustrate the convergence behavior and the performance comparison of the proposed algorithm.
In this paper, we propose Push-SAGA, a decentralized stochastic first-order method for finite-sum minimization over a directed network of nodes. Push-SAGA combines node-level variance reduction to remove the uncertainty caused by stochastic gradients, network-level gradient tracking to address the distributed nature of the data, and push-sum consensus to tackle the challenge of directed communication links. We show that Push-SAGA achieves linear convergence to the exact solution for smooth and strongly convex problems and is thus the first linearly-convergent stochastic algorithm over arbitrary strongly connected directed graphs. We also characterize the regimes in which Push-SAGA achieves a linear speed-up compared to its centralized counterpart and achieves a network-independent convergence rate. We illustrate the behavior and convergence properties of Push-SAGA with the help of numerical experiments on strongly convex and non-convex problems.
This article focuses on multi-agent distributed optimization problems with a common decision variable, a global linear equality constraint, and local set constraints over directed interconnection topologies. We propose a novel ADMM based distributed algorithm to solve the above problem. During every iteration of the algorithm, each agent solves a local convex optimization problem and utilizes a finite-time ``approximate consensus protocol to update its local estimate of the optimal solution. The proposed algorithm is the first ADMM based algorithm with convergence guarantees to solve distributed multi-agent optimization problems where the interconnection topology is directed. We establish two strong explicit convergence rate estimates for the proposed algorithm to the optimal solution under two different sets of assumptions on the problem data. Further, we evaluate our proposed algorithm by solving two non-linear and non-differentiable constrained distributed optimization problems over directed graphs. Additionally, we provide a numerical comparison of the proposed algorithm with other state-of-the-art algorithms to show its efficacy over the existing methods in the literature.
In decentralized optimization, multiple nodes in a network collaborate to minimize the sum of their local loss functions. The information exchange between nodes required for this task, is often limited by network connectivity. We consider a setting in which communication between nodes is hindered by both (i) a finite rate-constraint on the signal transmitted by any node, and (ii) additive noise corrupting the signal received by any node. We propose a novel algorithm for this scenario: Decentralized Lazy Mirror Descent with Differential Exchanges (DLMD-DiffEx), which guarantees convergence of the local estimates to the optimal solution under the given communication constraints. A salient feature of DLMD-DiffEx is the introduction of additional proxy variables that are maintained by the nodes to account for the disagreement in their estimates due to channel noise and rate-constraints. Convergence to the optimal solution is attained by having nodes iteratively exchange these disagreement terms until consensus is achieved. In order to prevent noise accumulation during this exchange, DLMD-DiffEx relies on two sequences; one controlling the power of the transmitted signal, and the other determining the consensus rate. We provide clear insights on the design of these two sequences which highlights the interplay between consensus rate and noise amplification. We investigate the performance of DLMD-DiffEx both from a theoretical perspective as well as through numerical evaluations.
Trajectory optimization with contact-rich behaviors has recently gained attention for generating diverse locomotion behaviors without pre-specified ground contact sequences. However, these approaches rely on precise models of robot dynamics and the terrain and are susceptible to uncertainty. Recent works have attempted to handle uncertainties in the system model, but few have investigated uncertainty in contact dynamics. In this study, we model uncertainty stemming from the terrain and design corresponding risk-sensitive objectives under the framework of contact-implicit trajectory optimization. In particular, we parameterize uncertainties from the terrain contact distance and friction coefficients using probability distributions and propose a corresponding expected residual minimization cost design approach. We evaluate our method in three simple robotic examples, including a legged hopping robot, and we benchmark one of our examples in simulation against a robust worst-case solution. We show that our risk-sensitive method produces contact-averse trajectories that are robust to terrain perturbations. Moreover, we demonstrate that the resulting trajectories converge to those generated by a traditional, non-robust method as the terrain model becomes more certain. Our study marks an important step towards a fully robust, contact-implicit approach suitable for deploying robots on real-world terrain.
In this work, we consider the decentralized optimization problem in which a network of $n$ agents, each possessing a smooth and convex objective function, wish to collaboratively minimize the average of all the objective functions through peer-to-peer communication in a directed graph. To solve the problem, we propose two accelerated Push-DIGing methods termed APD and APD-SC for minimizing non-strongly convex objective functions and strongly convex ones, respectively. We show that APD and APD-SC respectively converge at the rates $Oleft(frac{1}{k^2}right)$ and $Oleft(left(1 - Csqrt{frac{mu}{L}}right)^kright)$ up to constant factors depending only on the mixing matrix. To the best of our knowledge, APD and APD-SC are the first decentralized methods to achieve provable acceleration over unbalanced directed graphs. Numerical experiments demonstrate the effectiveness of both methods.