No Arabic abstract
This paper considers the problem of robot motion planning in a workspace with obstacles for systems with uncertain 2nd-order dynamics. In particular, we combine closed form potential-based feedback controllers with adaptive control techniques to guarantee the collision-free robot navigation to a predefined goal while compensating for the dynamic model uncertainties. We base our findings on sphere world-based configuration spaces, but extend our results to arbitrary star-shaped environments by using previous results on configuration space transformations. Moreover, we propose an algorithm for extending the control scheme to decentralized multi-robot systems. Finally, extensive simulation results verify the theoretical findings.
We develop a learning-based algorithm for the control of robotic systems governed by unknown, nonlinear dynamics to satisfy tasks expressed as signal temporal logic specifications. Most existing algorithms either assume certain parametric forms for the dynamic terms or resort to unnecessarily large control inputs (e.g., using reciprocal functions) in order to provide theoretical guarantees. The proposed algorithm avoids the aforementioned drawbacks by innovatively integrating neural network-based learning with adaptive control. More specifically, the algorithm learns a controller, represented as a neural network, using training data that correspond to a collection of different tasks and robot parameters. It then incorporates this neural network into an online closed-loop adaptive control mechanism in such a way that the resulting behavior satisfies a user-defined task. The proposed algorithm does not use any information on the unknown dynamic terms or any approximation schemes. We provide formal theoretical guarantees on the satisfaction of the task and we demonstrate the effectiveness of the algorithm in a virtual simulator using a 6-DOF robotic manipulator.
Formation and collision avoidance abilities are essential for multi-agent systems. Conventional methods usually require a central controller and global information to achieve collaboration, which is impractical in an unknown environment. In this paper, we propose a deep reinforcement learning (DRL) based distributed formation control scheme for autonomous vehicles. A modified stream-based obstacle avoidance method is applied to smoothen the optimal trajectory, and onboard sensors such as Lidar and antenna arrays are used to obtain local relative distance and angle information. The proposed scheme obtains a scalable distributed control policy which jointly optimizes formation tracking error and average collision rate with local observations. Simulation results demonstrate that our method outperforms two other state-of-the-art algorithms on maintaining formation and collision avoidance.
The paper proposes novel sampling strategies to compute the optimal path alteration of a surface vessel sailing in close quarters. Such strategy directly encodes the rules for safe navigation at sea, by exploiting the concept of minimal ship domain to determine the compliant region where the path deviation is to be generated. The sampling strategy is integrated within the optimal rapidly-exploring random tree algorithm, which minimizes the length of the path deviation. Further, the feasibility of the path with respect to the steering characteristics of own ship is verified by ensuring that the position of the new waypoints respects the minimum turning radius of the vessel. The proposed sampling strategy brings a significant performance improvement both in terms of optimal cost, computational speed and convergence rate.
We design and experimentally evaluate a hybrid safe-by-construction collision avoidance controller for autonomous vehicles. The controller combines into a single architecture the respective advantages of an adaptive controller and a discrete safe controller. The adaptive controller relies on model predictive control to achieve optimal efficiency in nominal conditions. The safe controller avoids collision by applying two different policies, for nominal and out-of-nominal conditions, respectively. We present design principles for both the adaptive and the safe controller and show how each one can contribute in the hybrid architecture to improve performance, road occupancy and passenger comfort while preserving safety. The experimental results confirm the feasibility of the approach and the practical relevance of hybrid controllers for safe and efficient driving.
We present a general decentralized formulation for a large class of collision avoidance methods and show that all collision avoidance methods of this form are guaranteed to be collision free. This class includes several existing algorithms in the literature as special cases. We then present a particular instance of this collision avoidance method, CARP (Collision Avoidance by Reciprocal Projections), that is effective even when the estimates of other agents positions and velocities are noisy. The methods main computational step involves the solution of a small convex optimization problem, which can be quickly solved in practice, even on embedded platforms, making it practical to use on computationally-constrained robots such as quadrotors. This method can be extended to find smooth polynomial trajectories for higher dynamic systems such at quadrotors. We demonstrate this algorithms performance in simulations and on a team of physical quadrotors. Our method finds optimal projections in a median time of 17.12ms for 285 instances of 100 randomly generated obstacles, and produces safe polynomial trajectories at over 60hz on-board quadrotors. Our paper is accompanied by an open source Julia implementation and ROS package.