Do you want to publish a course? Click here

Exciton-polariton mediated interaction between two nitrogen-vacancy color centers in diamond using two-dimensional transition metal dichalcogenides

70   0   0.0 ( 0 )
 Added by Nuno Peres
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, starting from a quantum master equation, we discuss the interaction between two negatively charged Nitrogen-vacancy color centers in diamond via exciton-polaritons propagating in a two-dimensional transition metal dichalcogenide layer in close proximity to a diamond crystal. We focus on the optical 1.945 eV transition and model the Nitrogen-vacancy color centers as two-level (artificial) atoms. We find that the interaction parameters and the energy levels renormalization constants are extremely sensitive to the distance of the Nitrogen-vacancy centers to the transition metal dichalcogenide layer. Analytical expressions are obtained for the spectrum of the exciton-polaritons and for the damping constants entering the Lindblad equation. The conditions for occurrence of exciton mediated superradiance are discussed.

rate research

Read More

Currently, thermally excited magnons are being intensively investigated owing to their potential in computing devices and thermoelectric conversion technologies. We report the detection of thermal magnon current propagating in a magnetic insulator yttrium iron garnet under a temperature gradient using a quantum sensor: electron spins associated with nitrogen-vacancy (NV) centers in diamond. Thermal magnon current was observed as modified Rabi oscillation frequencies of NV spins hosted in a beam-shaped bulk diamond that resonantly coupled with coherent magnon propagating over a long distance. Additionally, using a nanodiamond, alteration in NV spin relaxation rates depending on the applied temperature gradient were observed under a non-resonant NV excitation condition. The demonstration of probing thermal magnon current mediated by coherent magnon via NV spin states serves as a basis for creating a new device platform hybridizing spin caloritronics and spin qubits.
A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a function of the excitation power for both pure charge states, neutral and negatively charged, as well as for the photochromic state, where the center switches between both states at any power. A dedicated three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters, we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large extent dominated by that of the negative state, in agreement with the excess charge release of the negative center being much slower than the photon emission process.
A circularly polarized a.c. pump field illuminated near resonance on two-dimensional transition metal dichalcogenides (TMDs) produces an anomalous Hall effect in response to a d.c. bias field. In this work, we develop a theory for this photo-induced anomalous Hall effect in undoped TMDs irradiated by a strong coherent laser field. The strong field renormalizes the equilibrium bands and opens up a dynamical energy gap where single-photon resonance occurs. The resulting photon dressed states, or Floquet states, are treated within the rotating wave approximation. A quantum kinetic equation approach is developed to study the non-equilibrium density matrix and time-averaged transport currents under the simultaneous influence of the strong a.c. pump field and the weak d.c. probe field. Dissipative effects are taken into account in the kinetic equation that captures relaxation and dephasing. The photo-induced longitudinal and Hall conductivities display notable resonant signatures when the pump field frequency reaches the spin-split interband transition energies. Rather than valley polarization, we find that the anomalous Hall current is mainly driven by the intraband response of photon-dressed electron populations near the dynamical gap at both valleys, accompanied by a smaller contribution due to interband coherences. These findings highlight the importance of photon-dressed bands and non-equilibrium distribution functions in achieving a proper understanding of photo-induced anomalous Hall effect in a strong pump field.
251 - M. A. Cazalilla , H. Ochoa , 2013
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landau levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.
Monolayers of transition-metal dichalcogenides (TMDs) are characterized by an extraordinarily strong Coulomb interaction giving rise to tightly bound excitons with binding energies of hundreds of meV. Excitons dominate the optical response as well as the ultrafast dynamics in TMDs. As a result, a microscopic understanding of exciton dynamics is the key for technological application of these materials. In spite of this immense importance, elementary processes guiding the formation and relaxation of excitons after optical excitation of an electron-hole plasma has remained unexplored to a large extent. Here, we provide a fully quantum mechanical description of momentum- and energy-resolved exciton dynamics in monolayer molybdenum diselenide (MoSe$_2$) including optical excitation, formation of excitons, radiative recombination as well as phonon-induced cascade-like relaxation down to the excitonic ground state. Based on the gained insights, we reveal experimentally measurable features in pump-probe spectra providing evidence for the exciton relaxation cascade.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا