No Arabic abstract
A circularly polarized a.c. pump field illuminated near resonance on two-dimensional transition metal dichalcogenides (TMDs) produces an anomalous Hall effect in response to a d.c. bias field. In this work, we develop a theory for this photo-induced anomalous Hall effect in undoped TMDs irradiated by a strong coherent laser field. The strong field renormalizes the equilibrium bands and opens up a dynamical energy gap where single-photon resonance occurs. The resulting photon dressed states, or Floquet states, are treated within the rotating wave approximation. A quantum kinetic equation approach is developed to study the non-equilibrium density matrix and time-averaged transport currents under the simultaneous influence of the strong a.c. pump field and the weak d.c. probe field. Dissipative effects are taken into account in the kinetic equation that captures relaxation and dephasing. The photo-induced longitudinal and Hall conductivities display notable resonant signatures when the pump field frequency reaches the spin-split interband transition energies. Rather than valley polarization, we find that the anomalous Hall current is mainly driven by the intraband response of photon-dressed electron populations near the dynamical gap at both valleys, accompanied by a smaller contribution due to interband coherences. These findings highlight the importance of photon-dressed bands and non-equilibrium distribution functions in achieving a proper understanding of photo-induced anomalous Hall effect in a strong pump field.
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landau levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.
In transition-metal dichalcogenides, electrons in the K-valleys can experience both Ising and Rashba spin-orbit couplings. In this work, we show that the coexistence of Ising and Rashba spin-orbit couplings leads to a special type of valley Hall effect, which we call spin-orbit coupling induced valley Hall effect. Importantly, near the conduction band edge, the valley-dependent Berry curvatures generated by spin-orbit couplings are highly tunable by external gates and dominate over the intrinsic Berry curvatures originating from orbital degrees of freedom under accessible experimental conditions. We show that the spin-orbit coupling induced valley Hall effect is manifested in the gate dependence of the valley Hall conductivity, which can be detected by Kerr effect experiments.
We studied the nonlinear electric response in WTe2 and MoTe2 monolayers. When the inversion symmetry is breaking but the the time-reversal symmetry is preserved, a second-order Hall effect called the nonlinear anomalous Hall effect (NLAHE) emerges owing to the nonzero Berry curvature on the nonequilibrium Fermi surface. We reveal a strong NLAHE with a Hall-voltage that is quadratic with respect to the longitudinal current. The optimal current direction is normal to the mirror plane in these two-dimensional (2D) materials. The NLAHE can be sensitively tuned by an out-of-plane electric field, which induces a transition from a topological insulator to a normal insulator. Crossing the critical transition point, the magnitude of the NLAHE increases, and its sign is reversed. Our work paves the way to discover exotic nonlinear phenomena in inversion-symmetry-breaking 2D materials.
Recently, signatures of nonlinear Hall effects induced by Berry-curvature dipoles have been found in atomically thin 1T/Td-WTe$_2$. In this work, we show that in strained polar transition-metal dichalcogenides(TMDs) with 2H-structures, Berry-curvature dipoles created by spin degrees of freedom lead to strong nonlinear Hall effects. Under an easily accessible uniaxial strain of order 0.2%, strong nonlinear Hall signals, characterized by a Berry-curvature dipole on the order of 1{AA}, arise in electron-doped polar TMDs such as MoSSe, and this is easily detectable experimentally. Moreover, the magnitude and sign of the nonlinear Hall current can be easily tuned by electric gating and strain. These properties can be used to distinguish nonlinear Hall effects from classical mechanisms such as ratchet effects. Importantly, our system provides a potential scheme for building electrically switchable energy-harvesting rectifiers.
Orbital Hall effect (OHE) is the phenomenon of transverse flow of orbital moment in presence of an applied electric field. Solids with broken inversion symmetry are expected to exhibit a strong OHE due to the presence of an intrinsic orbital moment at individual momentum points in the Brillouin zone, which in presence of an applied electric field, flows in different directions causing a net orbital Hall current. Here we provide a comprehensive understanding of the effect and its tunability in the monolayer 2D transition metal dichalcogenides (TMDCs). Both metallic and insulating TMDCs are investigated from full density-functional calculations, effective $d$-band tight-binding models, as well as a minimal four-band model for the valley points that captures the key physics of the system. For the tuning of the OHE, we examine the role of hole doping as well as the change in the band parameters, which, e. g., can be controlled by strain. We demonstrate that the OHE is a more fundamental effect than the spin Hall effect (SHE), with the momentum-space orbital moments inducing a spin moment in the presence of the spin-orbit coupling, leading to the SHE. The physics of the OHE, described here, is relevant for 2D materials with broken inversion symmetry in general, even beyond the TMDCs, providing a broad platform for future research.