Do you want to publish a course? Click here

Gas Heating from Spinning and Non-Spinning Evaporating Primordial Black Holes

86   0   0.0 ( 0 )
 Added by Volodymyr Takhistov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Primordial black holes (PBHs) from the early Universe constitute a viable dark matter (DM) candidate and can span many orders of magnitude in mass. Light PBHs with masses around $10^{15}$ g contribute to DM and will efficiently evaporate through Hawking radiation at present time, leading to a slew of observable signatures. The emission will deposit energy and heat in the surrounding interstellar medium. We revisit the constraints from dwarf galaxy heating by evaporating non-spinning PBHs and find that conservative constraints from Leo T dwarf galaxy are significantly weaker than previously suggested. Furthermore, we analyse gas heating from spinning evaporating PBHs. The resulting limits on PBH DM abundance are found to be stronger for evaporating spinning PBHs than for non-spinning PBHs.



rate research

Read More

We present precision calculations of dark radiation in the form of gravitons coming from Hawking evaporation of spinning primordial black holes (PBHs) in the early Universe. Our calculation incorporates a careful treatment of extended spin distributions of a population of PBHs, the PBH reheating temperature, and the number of relativistic degrees of freedom. We compare our precision results with those existing in the literature, and show constraints on PBHs from current bounds on dark radiation from BBN and the CMB, as well as the projected sensitivity of CMB Stage 4 experiments. As an application, we consider the case of PBHs formed during an early matter-dominated era (EMDE). We calculate graviton production from various PBH spin distributions pertinent to EMDEs, and find that PBHs in the entire mass range up to $10^9,$g will be constrained by measurements from CMB Stage 4 experiments, assuming PBHs come to dominate the Universe prior to Hawking evaporation. We also find that for PBHs with monochromatic spins $a^*>0.81$, all PBH masses in the range $10^{-1},{rm g} < M_{rm BH} <10^9,$g will be probed by CMB Stage 4 experiments.
109 - Junsong Cang , Yu Gao , Yin-Zhe Ma 2021
Hawking radiation from primordial black holes (PBH) can ionize and heat up neutral gas during the cosmic dark ages, leaving imprints on the global 21cm signal of neutral hydrogen. We use the global 21cm signal to constrain the abundance of spinning PBHs in mass range of $[2 times 10^{13}, 10^{18}]$ grams. We consider several extended PBH distribution models. Our results show that 21cm can set the most stringent PBH bounds in our mass window. Compared with constraints set by {it{Planck}} cosmic microwave background (CMB) data, 21-cm limits are more stringent by about two orders of magnitudes. PBHs with higher spin are typically more strongly constrained. Our 21cm constraints for the monochromatic mass distribution rule out spinless PBHs with initial mass below $1.4 times 10^{17} {rm{g}}$, whereas extreme Kerr PBHs with reduced initial spin of $a_0=0.999$ are excluded as the dominant dark matter component for masses below $6 times 10^{17} {rm{g}}$. We also derived limits for the log-normal, power-law and critical collapse distributions.
Interstellar gas heating is a powerful cosmology-independent observable for exploring the parameter space of primordial black holes (PBHs) formed in the early Universe that could constitute part of the dark matter (DM). We provide a detailed analysis of the various aspects for this observable, such as PBH emission mechanisms. Using observational data from the Leo T dwarf galaxy, we constrain the PBH abundance over a broad mass-range, $M_{rm PBH} sim mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs. We also consider PBH gas heating of systems with bulk relative velocity with respect to the DM, such as Galactic clouds.
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of $lesssim 10^9$ g PBHs can be used to explore and discriminate different formation scenarios of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.
Black holes formed in the early universe, prior to the formation of stars, can exist as dark matter and also contribute to the black hole merger events observed in gravitational waves. We set a new limit on the abundance of primordial black holes (PBHs) by considering interactions of PBHs with the interstellar medium, which result in the heating of gas. We examine generic heating mechanisms, including emission from the accretion disk, dynamical friction, and disk outflows. Using the data from the Leo T dwarf galaxy, we set a new cosmology-independent limit on the abundance of PBHs in the mass range $mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا