No Arabic abstract
We present precision calculations of dark radiation in the form of gravitons coming from Hawking evaporation of spinning primordial black holes (PBHs) in the early Universe. Our calculation incorporates a careful treatment of extended spin distributions of a population of PBHs, the PBH reheating temperature, and the number of relativistic degrees of freedom. We compare our precision results with those existing in the literature, and show constraints on PBHs from current bounds on dark radiation from BBN and the CMB, as well as the projected sensitivity of CMB Stage 4 experiments. As an application, we consider the case of PBHs formed during an early matter-dominated era (EMDE). We calculate graviton production from various PBH spin distributions pertinent to EMDEs, and find that PBHs in the entire mass range up to $10^9,$g will be constrained by measurements from CMB Stage 4 experiments, assuming PBHs come to dominate the Universe prior to Hawking evaporation. We also find that for PBHs with monochromatic spins $a^*>0.81$, all PBH masses in the range $10^{-1},{rm g} < M_{rm BH} <10^9,$g will be probed by CMB Stage 4 experiments.
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has yielded unprecedented measurements of the soft gamma-ray spectrum of our Galaxy. Here we use those measurements to set constraints on dark matter (DM) that decays or annihilates into photons with energies $Eapprox 0.02-2$ MeV. First, we revisit the constraints on particle DM that decays or annihilates to photon pairs. In particular, for decaying DM, we find that previous limits were overstated by roughly an order of magnitude. Our new, conservative analysis finds that the DM lifetime must satisfy $taugtrsim 5times 10^{26},{rm s}times (m_{chi}/rm MeV)^{-1}$ for DM masses $m_{chi}=0.054-3.6$ MeV. For MeV-scale DM that annihilates into photons INTEGRAL sets the strongest constraints to date. Second, we target ultralight primordial black holes (PBHs) through their Hawking radiation. This makes them appear as decaying DM with a photon spectrum peaking at $Eapprox 5.77/(8pi G M_{rm PBH})$, for a PBH of mass $M_{rm PBH}$. We use the INTEGRAL data to demonstrate that, at 95% C.L., PBHs with masses less than $1.2times 10^{17}$ g cannot comprise all of the DM, setting the tightest bound to date on ultralight PBHs.
Primordial black holes (PBHs) from the early Universe constitute a viable dark matter (DM) candidate and can span many orders of magnitude in mass. Light PBHs with masses around $10^{15}$ g contribute to DM and will efficiently evaporate through Hawking radiation at present time, leading to a slew of observable signatures. The emission will deposit energy and heat in the surrounding interstellar medium. We revisit the constraints from dwarf galaxy heating by evaporating non-spinning PBHs and find that conservative constraints from Leo T dwarf galaxy are significantly weaker than previously suggested. Furthermore, we analyse gas heating from spinning evaporating PBHs. The resulting limits on PBH DM abundance are found to be stronger for evaporating spinning PBHs than for non-spinning PBHs.
The mechanism of the generation of dark matter and dark radiation from the evaporation of primordial black holes is very interesting. We consider the case of Kerr black holes to generalize previous results obtained in the Schwarzschild case. For dark matter, the results do not change dramatically and the bounds on warm dark matter apply similarly: in particular, the Kerr case cannot save the scenario of black hole domination for light dark matter. For dark radiation, the expectations for $Delta N_{eff}$ do not change significantly with respect to the Schwarzschild case, but for an enhancement in the case of spin 2 particles: in the massless case, however, the projected experimental sensitivity would be reached only for extremal black holes.
Primordial black holes (PBHs) have been proposed to explain at least a portion of dark matter. Observations have put strong constraints on PBHs in terms of the fraction of dark matter which they can represent, $f_{rm PBH}$, across a wide mass range -- apart from the stellar-mass range of $20M_odotlesssim M_{rm PBH}lesssim 100M_odot$. In this paper, we explore the possibility that such PBHs could serve as point-mass lenses capable of altering the gravitational-wave (GW) signals observed from binary black hole (BBH) mergers along their line-of-sight. We find that careful GW data analysis could verify the existence of such PBHs based on the $fitting~factor$ and odds ratio analyses. When such a lensed GW signal is detected, we expect to be able to measure the redshifted mass of the lens with a relative error $Delta M_{rm PBH}/M_{rm PBH}lesssim0.3$. If no such lensed GW events were detected despite the operation of sensitive GW detectors accumulating large numbers of BBH mergers, it would translate into a stringent constraint of $f_{rm PBH}lesssim 10^{-2}-10^{-5}$ for PBHs with a mass larger than $sim10M_odot$ by the Einstein Telescope after one year of running, and $f_{rm PBH}lesssim 0.2$ for PBHs with mass greater than $sim 50M_odot$ for advanced LIGO after ten years of running.
We examine the extent to which primordial black holes (PBHs) can constitute the observed dark matter while also giving rise to the measured matter-antimatter asymmetry and account for the observed baryon abundance through asymmetric Hawking radiation generated by a derivative coupling of curvature to the baryon-lepton current. We consider both broad and monochromatic mass spectra for this purpose. For the monochromatic spectrum we find that the correct dark matter and baryon energy densities are recovered for peak masses of the spectrum of $M_{rm pk} geq 10^{12}$ kg whereas for the broad case the observed energy densities can be reproduced regardless of peak mass. Adopting some simplifications for the early-time expansion history as a first approximation, we also find that the measured baryon asymmetry can be recovered within an order of magnitude. We argue furthermore that the correct value of the baryon-lepton yield can in principle be retrieved for scenarios where a significant amount of the radiation is produced by PBH decay during or after reheating, as is expected when the decaying PBHs also cause reheating, or when an early matter-dominated phase is considered. We conclude from this first analysis that the model merits further investigation.