Do you want to publish a course? Click here

Constraining Primordial Black Holes with Dwarf Galaxy Heating

124   0   0.0 ( 0 )
 Added by Volodymyr Takhistov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black holes formed in the early universe, prior to the formation of stars, can exist as dark matter and also contribute to the black hole merger events observed in gravitational waves. We set a new limit on the abundance of primordial black holes (PBHs) by considering interactions of PBHs with the interstellar medium, which result in the heating of gas. We examine generic heating mechanisms, including emission from the accretion disk, dynamical friction, and disk outflows. Using the data from the Leo T dwarf galaxy, we set a new cosmology-independent limit on the abundance of PBHs in the mass range $mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs.



rate research

Read More

Interstellar gas heating is a powerful cosmology-independent observable for exploring the parameter space of primordial black holes (PBHs) formed in the early Universe that could constitute part of the dark matter (DM). We provide a detailed analysis of the various aspects for this observable, such as PBH emission mechanisms. Using observational data from the Leo T dwarf galaxy, we constrain the PBH abundance over a broad mass-range, $M_{rm PBH} sim mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs. We also consider PBH gas heating of systems with bulk relative velocity with respect to the DM, such as Galactic clouds.
79 - Shikhar Mittal 2021
Using the global 21-cm signal measurement by the EDGES collaboration, we derive constraints on the fraction of the dark matter that is in the form of primordial black holes (PBHs) with masses in the range $10^{15}$-$10^{17},$g. Improving upon previous analyses, we consider the effect of the X-ray heating of the intergalactic medium on these constraints, and also use the full shape of the 21-cm absorption feature in our inference. In order to account for the anomalously deep absorption amplitude, we also consider an excess radio background motivated by LWA1 and ARCADE2 observations. Because the heating rate induced by PBH evaporation evolves slowly, the data favour a scenario in which PBH-induced heating is accompanied by X-ray heating. Also, for the same reason, using the full measurement across the EDGES observation band yields much stronger constraints on PBHs than just the redshift of absorption. We find that 21-cm observations exclude $f_{mathrm{PBH}} gtrsim 10^{-9.7}$ at 95% CL for $M_{mathrm{PBH}}=10^{15},$g. This limit weakens approximately as $M_{mathrm{PBH}}^4$ towards higher masses, thus providing the strongest constraints on ultralight evaporating PBHs as dark matter over the entire mass range $10^{15}$-$10^{17},$g. Under the assumption of a simple spherical gravitational collapse based on the Press-Schechter formalism, we also derive bounds on the curvature power spectrum at extremely small scales ($ksim 10^{15},$Mpc$^{-1}$). This highlights the usefulness of global 21-cm measurements, including non-detections, across wide frequency bands for probing exotic physical processes.
Primordial black holes (PBHs) from the early Universe constitute a viable dark matter (DM) candidate and can span many orders of magnitude in mass. Light PBHs with masses around $10^{15}$ g contribute to DM and will efficiently evaporate through Hawking radiation at present time, leading to a slew of observable signatures. The emission will deposit energy and heat in the surrounding interstellar medium. We revisit the constraints from dwarf galaxy heating by evaporating non-spinning PBHs and find that conservative constraints from Leo T dwarf galaxy are significantly weaker than previously suggested. Furthermore, we analyse gas heating from spinning evaporating PBHs. The resulting limits on PBH DM abundance are found to be stronger for evaporating spinning PBHs than for non-spinning PBHs.
Primordial black holes (PBHs) can constitute the predominant fraction of dark matter (DM) if PBHs reside in the currently unconstrained sublunar mass range. PBHs originating from scalar perturbations generated during inflation can naturally appear with a broad spectrum in a class of models. The resulting stochastic gravitational wave (GW) background generated from such PBH production can account for the recently reported North American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing array data signal, and will be testable in future GW observations by interferometer-type experiments such as Laser Interferometer Space Antenna (LISA). We show that the broad mass function of such PBH DM is already being probed by Subaru Hyper Suprime-Cam (HSC) microlensing data and is consistent with a detected candidate event. Upcoming observations of HSC will be able to provide an independent definitive test of the stochastic GW signals originating from such PBH DM production scenarios.
245 - Jose M. Diego 2019
Gravitational waves from binary black holes that are gravitationally lensed can be distorted by small microlenses along the line of sight. Microlenses with masses of a few tens of solar masses, and that are close to a critical curve in the lens plane, can introduce a time delay of a few millisecond. Such time delay would result in distinctive interference patterns in the gravitational wave that can be measured with current experiments such as LIGO/Virgo. We consider the particular case of primordial black holes with masses between 5 and 50 solar masses acting as microlenses. We study the effect of a population of primordial black holes constituting a fraction of the dark matter, and contained in a macrolens (galaxy or cluster), over gravitational waves that are being lensed by the combined effect of the macrolens plus microlenses. We find that at the typical magnifications expected for observed GW events, the fraction of dark matter in the form of compact microlenses, such as primordial black holes, can be constrained to percent level. Similarly, if a small percentage of the dark matter is in the form of microlenses with a few tens of solar masses, at sufficiently large magnification factors, all gravitational waves will show interference effects. These effects could have an impact on the inferred parameters. The effect is more important for macroimages with negative parity, which usually arrive after the macroimages with positive parity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا