Do you want to publish a course? Click here

Electric field control of interfacial Dzyaloshinskii-Moriya interaction in Pt/Co/AlO$_x$ thin films

117   0   0.0 ( 0 )
 Added by Anne Bernand-Mantel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied electric field modification of magnetic properties in a Pt/Co/AlO$_x$ trilayer via magneto-optical Kerr microscopy. We observed the spontaneous formation of labyrinthine magnetic domain structure due to thermally activated domain nucleation and propagation under zero applied magnetic field. A variation of the period of the labyrinthine structure under electric field is observed as well as saturation magnetization and magnetic anisotropy variations. Using an analytical formula of the stripe equilibrium width we estimate the variation of the interfacial Dzyaloshinskii-Moriya interaction under electric field as function of the exchange stiffness constant.



rate research

Read More

Despite a decade of research, the precise mechanisms occurring at interfaces underlying the Dzyaloshinskii-Moriya interaction (DMI), and thus the possibility of fine-tuning it, are not yet fully identified. In this study, we investigate the origin of the interfacial DMI, aiming at disentangling how independent are the interfaces around the ferromagnetic layer, and what are their relative contributions to the effective DMI amplitude. For this purpose, we have grown and investigated a large variety of systems with a common structure Pt$|$Co$|M$ with $M =$ Ni, Pd, Ru, Al, Al$|$Ta and MoSi. We explore the correlation between the effective interfacial DMI, and different intrinsic properties of metals, namely atomic number, electronegativity and work function difference at the Co$|M$ interfaces. We find a linear relationship between interfacial DMI and the work function difference between the two elements, hence relating the nature of this behavior to the interfacial potential gradient at the metallic interfaces. The understanding of the DMI mechanism is of utmost importance since it opens up the possibility of precisely engineering the magnetic and hence the spintronic properties for future devices.
The Dzyaloshinskii-Moriya interaction (DMI), being one of the origins for chiral magnetism, is currently attracting huge attention in the research community focusing on applied magnetism and spintronics. For future applications an accurate measurement of its strength is indispensable. In this work, we present a review of the state of the art of measuring the coefficient $D$ of the Dzyaloshinskii-Moriya interaction, the DMI constant, focusing on systems where the interaction arises from the interface between two materials. The measurement techniques are divided into three categories: a) domain wall based measurements, b) spin wave based measurements and c) spin orbit torque based measurements. We give an overview of the experimental techniques as well as their theoretical background and models for the quantification of the DMI constant $D$. We analyze the advantages and disadvantages of each method and compare $D$ values in different stacks. The review aims to obtain a better understanding of the applicability of the different techniques to different stacks and of the origin of apparent disagreement of literature values.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimentally demonstrate an enhanced iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer for improving tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant up to 3.3 mJ/m^2 is shown, which could be promising for the scaling down of skyrmion electronics.
Chiral magnets are of fundamental interest and have important technological ramifications. The origin of chiral magnets lies in the Dzyaloshinskii-Moriya interaction (DMI), an interaction whose experimental and theoretical determination is laborious. We derive an expression that identifies the electric dipole moment as descriptor for the systematic design of chiral magnetic multilayers. Using density functional theory calculations, we determine the DMI of (111)-oriented metallic ferromagnetic $Z$/Co/Pt multilayers of ultrathin films. The non-magnetic layer $Z$ determines the DMI at the Co-Pt interface. The results validate the electric and magnetic dipole moments as excellent descriptors. We found a linear relation between the electric dipole moment of Pt, the Allen electronegativity of $Z$, and the contribution of Pt to the total DMI.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا