No Arabic abstract
Given a graph, an $L(p,1)$-labeling of the graph is an assignment $f$ from the vertex set to the set of nonnegative integers such that for any pair of vertices $(u,v),|f (u) - f (v)| ge p$ if $u$ and $v$ are adjacent, and $f(u) eq f(v)$ if $u$ and $v$ are at distance $2$. The $L(p,1)$-labeling problem is to minimize the span of $f$ (i.e.,$max_{uin V}(f(u)) - min_{uin V}(f(u))+1$). It is known to be NP-hard even for graphs of maximum degree $3$ or graphs with tree-width 2, whereas it is fixed-parameter tractable with respect to vertex cover number. Since vertex cover number is a kind of the strongest parameter, there is a large gap between tractability and intractability from the viewpoint of parameterization. To fill up the gap, in this paper, we propose new fixed-parameter algorithms for $L(p,1)$-Labeling by the twin cover number plus the maximum clique size and by the tree-width plus the maximum degree. These algorithms reduce the gap in terms of several combinations of parameters.
In the online labeling problem with parameters n and m we are presented with a sequence of n keys from a totally ordered universe U and must assign each arriving key a label from the label set {1,2,...,m} so that the order of labels (strictly) respects the ordering on U. As new keys arrive it may be necessary to change the labels of some items; such changes may be done at any time at unit cost for each change. The goal is to minimize the total cost. An alternative formulation of this problem is the file maintenance problem, in which the items, instead of being labeled, are maintained in sorted order in an array of length m, and we pay unit cost for moving an item. For the case m=cn for constant c>1, there are known algorithms that use at most O(n log(n)^2) relabelings in total [Itai, Konheim, Rodeh, 1981], and it was shown recently that this is asymptotically optimal [Bulanek, Koucky, Saks, 2012]. For the case of m={Theta}(n^C) for C>1, algorithms are known that use O(n log n) relabelings. A matching lower bound was claimed in [Dietz, Seiferas, Zhang, 2004]. That proof involved two distinct steps: a lower bound for a problem they call prefix bucketing and a reduction from prefix bucketing to online labeling. The reduction seems to be incorrect, leaving a (seemingly significant) gap in the proof. In this paper we close the gap by presenting a correct reduction to prefix bucketing. Furthermore we give a simplified and improved analysis of the prefix bucketing lower bound. This improvement allows us to extend the lower bounds for online labeling to the case where the number m of labels is superpolynomial in n. In particular, for superpolynomial m we get an asymptotically optimal lower bound {Omega}((n log n) / (log log m - log log n)).
Hub Labeling (HL) is a data structure for distance oracles. Hierarchical HL (HHL) is a special type of HL, that received a lot of attention from a practical point of view. However, theoretical questions such as NP-hardness and approximation guarantee for HHL algorithms have been left aside. In this paper we study HL and HHL from the complexity theory point of view. We prove that both HL and HHL are NP-hard, and present upper and lower bounds for the approximation ratios of greedy HHL algorithms used in practice. We also introduce a new variant of the greedy HHL algorithm and a proof that it produces small labels for graphs with small highway dimension.
We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,...,r} are to be stored in an array of size m >= n. The items are presented sequentially in an arbitrary order, and must be stored in the array in sorted order (but not necessarily in consecutive locations in the array). Each new item must be stored in the array before the next item is received. If r<=m then we can simply store item j in location j but if r>m then we may have to shift the location of stored items to make space for a newly arrived item. The algorithm is charged each time an item is stored in the array, or moved to a new location. The goal is to minimize the total number of such moves done by the algorithm. This problem is non-trivial when n=<m<r. In the case that m=Cn for some C>1, algorithms for this problem with cost O(log(n)^2) per item have been given [IKR81, Wil92, BCD+02]. When m=n, algorithms with cost O(log(n)^3) per item were given [Zha93, BS07]. In this paper we prove lower bounds that show that these algorithms are optimal, up to constant factors. Previously, the only lower bound known for this range of parameters was a lower bound of Omega(log(n)^2) for the restricted class of smooth algorithms [DSZ05a, Zha93]. We also provide an algorithm for the sparse case: If the number of items is polylogarithmic in the array size then the problem can be solved in amortized constant time per item.
The paper presents fault-tolerant (FT) labeling schemes for general graphs, as well as, improved FT routing schemes. For a given $n$-vertex graph $G$ and a bound $f$ on the number of faults, an $f$-FT connectivity labeling scheme is a distributed data structure that assigns each of the graph edges and vertices a short label, such that given the labels of the vertices $s$ and $t$, and at most $f$ failing edges $F$, one can determine if $s$ and $t$ are connected in $G setminus F$. The primary complexity measure is the length of the individual labels. Since their introduction by [Courcelle, Twigg, STACS 07], compact FT labeling schemes have been devised only for a limited collection of graph families. In this work, we fill in this gap by proposing two (independent) FT connectivity labeling schemes for general graphs, with a nearly optimal label length. This serves the basis for providing also FT approximate distance labeling schemes, and ultimately also routing schemes. Our main results for an $n$-vertex graph and a fault bound $f$ are: -- There is a randomized FT connectivity labeling scheme with a label length of $O(f+log n)$ bits, hence optimal for $f=O(log n)$. This scheme is based on the notion of cycle space sampling [Pritchard, Thurimella, TALG 11]. -- There is a randomized FT connectivity labeling scheme with a label length of $O(log^3 n)$ bits (independent of the number of faults $f$). This scheme is based on the notion of linear sketches of [Ahn et al., SODA 12]. -- For $kgeq 1$, there is a randomized routing scheme that routes a message from $s$ to $t$ in the presence of a set $F$ of faulty edges, with stretch $O(|F|^2 k)$ and routing tables of size $tilde{O}(f^3 n^{1/k})$. This significantly improves over the state-of-the-art bounds by [Chechik, ICALP 11], providing the first scheme with sub-linear FT labeling and routing schemes for general graphs.
The textit{Multi-Constraint Shortest Path (MCSP)} problem aims to find the shortest path between two nodes in a network subject to a given constraint set. It is typically processed as a textit{skyline path} problem. However, the number of intermediate skyline paths becomes larger as the network size increases and the constraint number grows, which brings about the dramatical growth of computational cost and further makes the existing index-based methods hardly capable of obtaining the complete exact results. In this paper, we propose a novel high-dimensional skyline path concatenation method to avoid the expensive skyline path search, which then supports the efficient construction of hop labeling index for textit{MCSP} queries. Specifically, a set of insightful observations and techniques are proposed to improve the efficiency of concatenating two skyline path set, a textit{n-Cube} technique is designed to prune the concatenation space among multiple hops, and a textit{constraint pruning} method is used to avoid the unnecessary computation. Furthermore, to scale up to larger networks, we propose a novel textit{forest hop labeling} which enables the parallel label construction from different network partitions. Our approach is the first method that can achieve both accuracy and efficiency for textit{MCSP} query answering. Extensive experiments on real-life road networks demonstrate the superiority of our method over the state-of-the-art solutions.