Do you want to publish a course? Click here

Multi-Target Deep Learning for Algal Detection and Classification

142   0   0.0 ( 0 )
 Added by Ziyuan Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.



rate research

Read More

Underwater surveys conducted using divers or robots equipped with customized camera payloads can generate a large number of images. Manual review of these images to extract ecological data is prohibitive in terms of time and cost, thus providing strong incentive to automate this process using machine learning solutions. In this paper, we introduce a multi-species detector and classifier for seagrasses based on a deep convolutional neural network (achieved an overall accuracy of 92.4%). We also introduce a simple method to semi-automatically label image patches and therefore minimize manual labelling requirement. We describe and release publicly the dataset collected in this study as well as the code and pre-trained models to replicate our experiments at: https://github.com/csiro-robotics/deepseagrass
Usually, Neural Networks models are trained with a large dataset of images in homogeneous backgrounds. The issue is that the performance of the network models trained could be significantly degraded in a complex and heterogeneous environment. To mitigate the issue, this paper develops a framework that permits to autonomously generate a training dataset in heterogeneous cluttered backgrounds. It is clear that the learning effectiveness of the proposed framework should be improved in complex and heterogeneous environments, compared with the ones with the typical dataset. In our framework, a state-of-the-art image segmentation technique called DeepLab is used to extract objects of interest from a picture and Chroma-key technique is then used to merge the extracted objects of interest into specific heterogeneous backgrounds. The performance of the proposed framework is investigated through empirical tests and compared with that of the model trained with the COCO dataset. The results show that the proposed framework outperforms the model compared. This implies that the learning effectiveness of the framework developed is superior to the models with the typical dataset.
Using state-of-the-art deep learning models for cancer diagnosis presents several challenges related to the nature and availability of labeled histology images. In particular, cancer grading and localization in these images normally relies on both image- and pixel-level labels, the latter requiring a costly annotation process. In this survey, deep weakly-supervised learning (WSL) models are investigated to identify and locate diseases in histology images, without the need for pixel-level annotations. Given training data with global image-level labels, these models allow to simultaneously classify histology images and yield pixel-wise localization scores, thereby identifying the corresponding regions of interest (ROI). Since relevant WSL models have mainly been investigated within the computer vision community, and validated on natural scene images, we assess the extent to which they apply to histology images which have challenging properties, e.g. very large size, similarity between foreground/background, highly unstructured regions, stain heterogeneity, and noisy/ambiguous labels. The most relevant models for deep WSL are compared experimentally in terms of accuracy (classification and pixel-wise localization) on several public benchmark histology datasets for breast and colon cancer -- BACH ICIAR 2018, BreaKHis, CAMELYON16, and GlaS. Furthermore, for large-scale evaluation of WSL models on histology images, we propose a protocol to construct WSL datasets from Whole Slide Imaging. Results indicate that several deep learning models can provide a high level of classification accuracy, although accurate pixel-wise localization of cancer regions remains an issue for such images. Code is publicly available.
Anomaly detection in videos is a problem that has been studied for more than a decade. This area has piqued the interest of researchers due to its wide applicability. Because of this, there has been a wide array of approaches that have been proposed throughout the years and these approaches range from statistical-based approaches to machine learning-based approaches. Numerous surveys have already been conducted on this area but this paper focuses on providing an overview on the recent advances in the field of anomaly detection using Deep Learning. Deep Learning has been applied successfully in many fields of artificial intelligence such as computer vision, natural language processing and more. This survey, however, focuses on how Deep Learning has improved and provided more insights to the area of video anomaly detection. This paper provides a categorization of the different Deep Learning approaches with respect to their objectives. Additionally, it also discusses the commonly used datasets along with the common evaluation metrics. Afterwards, a discussion synthesizing all of the recent approaches is made to provide direction and possible areas for future research.
Ultrasound (US) is a non-invasive yet effective medical diagnostic imaging technique for the COVID-19 global pandemic. However, due to complex feature behaviors and expensive annotations of US images, it is difficult to apply Artificial Intelligence (AI) assisting approaches for lungs multi-symptom (multi-label) classification. To overcome these difficulties, we propose a novel semi-supervised Two-Stream Active Learning (TSAL) method to model complicated features and reduce labeling costs in an iterative procedure. The core component of TSAL is the multi-label learning mechanism, in which label correlations information is used to design multi-label margin (MLM) strategy and confidence validation for automatically selecting informative samples and confident labels. On this basis, a multi-symptom multi-label (MSML) classification network is proposed to learn discriminative features of lung symptoms, and a human-machine interaction is exploited to confirm the final annotations that are used to fine-tune MSML with progressively labeled data. Moreover, a novel lung US dataset named COVID19-LUSMS is built, currently containing 71 clinical patients with 6,836 images sampled from 678 videos. Experimental evaluations show that TSAL using only 20% data can achieve superior performance to the baseline and the state-of-the-art. Qualitatively, visualization of both attention map and sample distribution confirms the good consistency with the clinic knowledge.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا