Do you want to publish a course? Click here

Basin stability and limit cycles in a conceptual model for climate tipping cascades

289   0   0.0 ( 0 )
 Added by Nico Wunderling
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable framework: the Greenland and West Antarctic Ice Sheets, the Atlantic Meridional Overturning Circulation (AMOC), the El-Nino Southern Oscillation (ENSO) and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 {deg}C above pre-industrial climate conditions. For lower levels of warming, states including disintegrated ice sheets on West Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the Greenland Ice Sheet and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles.



rate research

Read More

A climate state close to a tipping point will have a degenerate linear response to perturbations, which can be associated with extreme values of the equilibrium climate sensitivity (ECS). In this paper we contrast linearized (`instantaneous) with fully nonlinear geometric (`two-point) notions of ECS, in both presence and absence of tipping points. For a stochastic energy balance model of the global mean surface temperature with two stable regimes, we confirm that tipping events cause the appearance of extremes in both notions of ECS. Moreover, multiple regimes with different mean sensitivities are visible in the two-point ECS. We confirm some of our findings in a physics-based multi-box model of the climate system.
Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events) to a few simple principles, namely (i) a threshold process, (ii) an overshooting in the stability of the system and (iii) a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2), in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance) and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations). We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to various reports (e.g., INCCA 2010; NATCOMM2 2012), it is important to have an ensemble of climate projections drawn from multiple RCMs due to large uncertainties in regional-scale climate projections. Ensembles of multi-RCM projections driven under different perceivable socio-economic scenarios are required to capture the probable path of growth, and provide the behavior of future climate and impacts on various biophysical systems and economic sectors dependent on such systems. The Centre for Climate Change Research, Indian Institute of Tropical Meteorology (CCCR-IITM) has generated an ensemble of high resolution downscaled projections of regional climate and monsoon over South Asia until 2100 for the Intergovernmental Panel for Climate Change (IPCC)using a RCM (ICTP-RegCM4) at 50 km horizontal resolution, by driving the regional model with lateral and lower boundary conditions from multiple global atmosphere-ocean coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The future projections are based on three Representation Concentration Pathway (RCP) scenarios (viz., RCP2.6, RCP4.5, RCP8.5) of the IPCC.
We construct and analyze climate networks based on daily satellite measurements of temperatures and geopotential heights. We show that these networks are stable during time and are similar over different altitudes. Each link in our network is stable with typical 15% variability. The entire hierarchy of links is about 80% consistent during time. We show that about half of this stability is due to the spatial 2D embedding of the network, and half is due to physical coupling mechanisms. The network stability of equatorial regions is found to be lower compared to the stability of a typical network in non-equatorial regions.
The Atlantic Meridional Overturning Circulation (AMOC) transports substantial amounts of heat into the North Atlantic sector, and hence is of very high importance in regional climate projections. The AMOC has been observed to show multi-stability across a range of models of different complexity. The simplest models find a bifurcation associated with the AMOC `on state losing stability that is a saddle node. Here we study a physically derived global oceanic model of Wood {em et al} with five boxes, that is calibrated to runs of the FAMOUS coupled atmosphere-ocean general circulation model. We find the loss of stability of the `on state is due to a subcritical Hopf for parameters from both pre-industrial and doubled CO${}_2$ atmospheres. This loss of stability via subcritical Hopf bifurcation has important consequences for the behaviour of the basin of attraction close to bifurcation. We consider various time-dependent profiles of freshwater forcing to the system, and find that rate-induced thresholds for tipping can appear, even for perturbations that do not cross the bifurcation. Understanding how such state transitions occur is important in determining allowable safe climate change mitigation pathways to avoid collapse of the AMOC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا