Do you want to publish a course? Click here

Stability of Climate Networks with Time

236   0   0.0 ( 0 )
 Added by Shlomo Havlin
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct and analyze climate networks based on daily satellite measurements of temperatures and geopotential heights. We show that these networks are stable during time and are similar over different altitudes. Each link in our network is stable with typical 15% variability. The entire hierarchy of links is about 80% consistent during time. We show that about half of this stability is due to the spatial 2D embedding of the network, and half is due to physical coupling mechanisms. The network stability of equatorial regions is found to be lower compared to the stability of a typical network in non-equatorial regions.



rate research

Read More

Different definitions of links in climate networks may lead to considerably different network topologies. We construct a network from climate records of surface level atmospheric temperature in different geographical sites around the globe using two commonly used definitions of links. Utilizing detrended fluctuation analysis, shuffled surrogates and separation analysis of maritime and continental records, we find that one of the major influences on the structure of climate networks is due to the auto-correlation in the records, that may introduce spurious links. This may explain why different methods could lead to different climate network topologies.
This popular article provides a short summary of the progress and prospects in Weather and Climate Modelling for the benefit of high school and undergraduate college students and early career researchers. Although this is not a comprehensive scientific article, the basic information provided here is intended to introduce students and researchers to the topic of Weather and Climate Modelling - which comes under the broad discipline of Atmospheric / Oceanic / Climate / Earth Sciences. This article briefly summarizes the historical developments, progress, scientific challenges in weather and climate modelling and career opportunities.
Climate models are complicated software systems that approximate atmospheric and oceanic fluid mechanics at a coarse spatial resolution. Typical climate forecasts only explicitly resolve processes larger than 100 km and approximate any process occurring below this scale (e.g. thunderstorms) using so-called parametrizations. Machine learning could improve upon the accuracy of some traditional physical parametrizations by learning from so-called global cloud-resolving models. We compare the performance of two machine learning models, random forests (RF) and neural networks (NNs), at parametrizing the aggregate effect of moist physics in a 3 km resolution global simulation with an atmospheric model. The NN outperforms the RF when evaluated offline on a testing dataset. However, when the ML models are coupled to an atmospheric model run at 200 km resolution, the NN-assisted simulation crashes with 7 days, while the RF-assisted simulations remain stable. Both runs produce more accurate weather forecasts than a baseline configuration, but globally averaged climate variables drift over longer timescales.
Recent work has provided ample evidence that nonlinear methods of time series analysis potentially allow for detecting periods of anomalous dynamics in paleoclimate proxy records that are otherwise hidden to classical statis- tical analysis. Following upon these ideas, in this study we systematically test a set of Late Holocene terrestrial paleoclimate records from Northern Europe for indications of intermittent periods of time-irreversibility during which the data are incompatible with a stationary linear-stochastic process. Our analysis reveals that the onsets of both the Medieval Climate Anomaly and the Little Ice Age, the end of the Roman Warm Period and the Late Antique Little Ice Age have been characterized by such dynamical anomalies. These findings may indicate qualitative changes in the dominant regime of inter-annual climate variability in terms of large-scale atmospheric circula- tion patterns, ocean-atmosphere interactions and external forcings affecting the climate of the North Atlantic region.
Emission metrics, a crucial tool in setting effective equivalences between greenhouse gases, currently require a subjective, arbitrary choice of time horizon. Here, we propose a novel framework that uses a specific temperature goal to calculate the time horizon that aligns with scenarios satisfying that temperature goal. We analyze the Intergovernmental Panel on Climate Change Special Report on Global Warming of 1.5 C Scenario Database 1 to find that justified time horizons for the 1.5 C and 2 C global warming goals of the Paris Agreement are 22 +/- 1 and 55 +/- 1 years respectively. We then use these time horizons to quantify time-dependent emission metrics. Using methane as an example, we find that emission metrics that align with the 1.5 C and 2 C warming goals respectively (using their associated time horizons) are 80 +/- 1 and 45 +/- 1 for the Global Warming Potential, 62 +/- 1 and 11 +/- 1 for the Global Temperature change Potential, and 89 +/- 1 and 50 +/- 1 for the integrated Global Temperature change Potential. Using the most commonly used time horizon, 100 years, results in underestimating methane emission metrics by 40-70% relative to the values we calculate that align with the 2 C goal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا