Do you want to publish a course? Click here

Inverse parabolic problems of determining functions with one spatial-component independence by Carleman estimate

76   0   0.0 ( 0 )
 Added by Yavar Kian
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

For an initial-boundary value problem for a parabolic equation in the spatial variable $x=(x_1,.., x_n)$ and time $t$, we consider an inverse problem of determining a coefficient which is independent of one spatial component $x_n$ by extra lateral boundary data. We apply a Carleman estimate to prove a conditional stability estimate for the inverse problem. Also we prove similar results for the corresponding inverse source problem.



rate research

Read More

We prove that the stationary magnetic potential vector and the electrostatic potential entering the dynamic magnetic Schrodinger equation can be Lipschitz stably retrieved through finitely many local boundary measurements of the solution. The proof is by means of a specific global Carleman estimate for the Schrodinger equation, established in the first part of the paper.
70 - X. Huang , A. Kawamoto 2020
We consider a half-order time-fractional diffusion equation in an arbitrary dimension and investigate inverse problems of determining the source term or the diffusion coefficient from spatial data at an arbitrarily fixed time under some additional assumptions. We establish the stability estimate of Lipschitz type in the inverse problems and the proofs are based on the Bukhgeim-Klibanov method by using Carleman estimates.
In this chapter, we mainly review theoretical results on inverse source problems for diffusion equations with the Caputo time-fractional derivatives of order $alphain(0,1)$. Our survey covers the following types of inverse problems: 1. determination of time-dependent functions in interior source terms 2. determination of space-dependent functions in interior source terms 3. determination of time-dependent functions appearing in boundary conditions
When considering fractional diffusion equation as model equation in analyzing anomalous diffusion processes, some important parameters in the model related to orders of the fractional derivatives, are often unknown and difficult to be directly measured, which requires one to discuss inverse problems of identifying these physical quantities from some indirectly observed information of solutions. Inverse problems in determining these unknown parameters of the model are not only theoretically interesting, but also necessary for finding solutions to initial-boundary value problems and studying properties of solutions. This chapter surveys works on such inverse problems for fractional diffusion equations.
We consider two phaseless inverse problems for elliptic equation. The statements of these problems differ from have considered. Namely, instead of given information about modulus of scattering waves, we consider the information related to modulus of full fields, which consist of sums of incident and scattering fields. These full fields are the interference fields generated by point sources. We introduce a set of auxiliary point sources for solving the inverse problems and demonstrate that the corresponding data allow us to solve the inverse problems in a way similar to the case of measurements of scattering waves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا