Do you want to publish a course? Click here

Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates

71   0   0.0 ( 0 )
 Added by Xinchi Huang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider a half-order time-fractional diffusion equation in an arbitrary dimension and investigate inverse problems of determining the source term or the diffusion coefficient from spatial data at an arbitrarily fixed time under some additional assumptions. We establish the stability estimate of Lipschitz type in the inverse problems and the proofs are based on the Bukhgeim-Klibanov method by using Carleman estimates.



rate research

Read More

We prove that the stationary magnetic potential vector and the electrostatic potential entering the dynamic magnetic Schrodinger equation can be Lipschitz stably retrieved through finitely many local boundary measurements of the solution. The proof is by means of a specific global Carleman estimate for the Schrodinger equation, established in the first part of the paper.
The main aim of this paper is to solve an inverse source problem for a general nonlinear hyperbolic equation. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to the inverse problem. To find this fixed point, we define a recursive sequence with an arbitrary initial term by the same manner as in the classical proof of the contraction principle. Applying a Carleman estimate, we show that the sequence above converges to the desired solution with the exponential rate. Therefore, our new method can be considered as an analog of the contraction principle. We rigorously study the stability of our method with respect to noise. Numerical examples are presented.
85 - Yihong Du , Wenjie Ni 2020
We show how the Stefan type free boundary problem with random diffusion in one space dimension can be approximated by the corresponding free boundary problem with nonlocal diffusion. The approximation problem is a slightly modified version of the nonlocal diffusion problem with free boundaries considered in [4,8]. The proof relies on the introduction of several auxiliary free boundary problems and constructions of delicate upper and lower solutions for these problems. As usual, the approximation is achieved by choosing the kernel function in the nonlocal diffusion term of the form $J_epsilon(x)=frac 1epsilon J(frac xepsilon)$ for small $epsilon>0$, where $J(x)$ has compact support. We also give an estimate of the error term of the approximation by some positive power of $epsilon$.
We consider the Cauchy problems associated with semirelativistc NLS (sNLS) and half wave (HW). In particular we focus on the following two main questions: local/global Cauchy theory; existence and stability/instability of ground states. In between other results, we prove the existence and stability of ground states for sNLS in the $L^2$ supercritical regime. This is in sharp contrast with the instability of ground states for the corresponding HW, which is also established along the paper, by showing an inflation of norms phenomenon. Concerning the Cauchy theory we show, under radial symmetry assumption the following results: a local existence result in $H^1$ for energy subcritical nonlinearity and a global existence result in the $L^2$ subcritical regime.
Given $(M,g)$, a compact connected Riemannian manifold of dimension $d geq 2$, with boundary $partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) times M$, $T>0$, with time-fractional Caputo derivative of order $alpha in (0,1) cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $partial M$ at fixed time. In the flat case where $M$ is a compact subset of $mathbb R^d$, two out the three coefficients $rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $rho partial_t^alpha u-textrm{div}(a abla u)+ q u=0$ on $(0,T)times Omega$ are recovered simultaneously.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا