Do you want to publish a course? Click here

Master Face Attacks on Face Recognition Systems

106   0   0.0 ( 0 )
 Added by Hong Huy Nguyen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Face authentication is now widely used, especially on mobile devices, rather than authentication using a personal identification number or an unlock pattern, due to its convenience. It has thus become a tempting target for attackers using a presentation attack. Traditional presentation attacks use facial images or videos of the victim. Previous work has proven the existence of master faces, i.e., faces that match multiple enrolled templates in face recognition systems, and their existence extends the ability of presentation attacks. In this paper, we perform an extensive study on latent variable evolution (LVE), a method commonly used to generate master faces. We run an LVE algorithm for various scenarios and with more than one database and/or face recognition system to study the properties of the master faces and to understand in which conditions strong master faces could be generated. Moreover, through analysis, we hypothesize that master faces come from some dense areas in the embedding spaces of the face recognition systems. Last but not least, simulated presentation attacks using generated master faces generally preserve the false-matching ability of their original digital forms, thus demonstrating that the existence of master faces poses an actual threat.



rate research

Read More

Due to its convenience, biometric authentication, especial face authentication, has become increasingly mainstream and thus is now a prime target for attackers. Presentation attacks and face morphing are typical types of attack. Previous research has shown that finger-vein- and fingerprint-based authentication methods are susceptible to wolf attacks, in which a wolf sample matches many enrolled user templates. In this work, we demonstrated that wolf (generic) faces, which we call master faces, can also compromise face recognition systems and that the master face concept can be generalized in some cases. Motivated by recent similar work in the fingerprint domain, we generated high-quality master faces by using the state-of-the-art face generator StyleGAN in a process called latent variable evolution. Experiments demonstrated that even attackers with limited resources using only pre-trained models available on the Internet can initiate master face attacks. The results, in addition to demonstrating performance from the attackers point of view, can also be used to clarify and improve the performance of face recognition systems and harden face authentication systems.
Face recognition has obtained remarkable progress in recent years due to the great improvement of deep convolutional neural networks (CNNs). However, deep CNNs are vulnerable to adversarial examples, which can cause fateful consequences in real-world face recognition applications with security-sensitive purposes. Adversarial attacks are widely studied as they can identify the vulnerability of the models before they are deployed. In this paper, we evaluate the robustness of state-of-the-art face recognition models in the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but can only acquire hard-label predictions by sending queries to the target model. This attack setting is more practical in real-world face recognition systems. To improve the efficiency of previous methods, we propose an evolutionary attack algorithm, which can model the local geometries of the search directions and reduce the dimension of the search space. Extensive experiments demonstrate the effectiveness of the proposed method that induces a minimum perturbation to an input face image with fewer queries. We also apply the proposed method to attack a real-world face recognition system successfully.
Face occlusions, covering either the majority or discriminative parts of the face, can break facial perception and produce a drastic loss of information. Biometric systems such as recent deep face recognition models are not immune to obstructions or other objects covering parts of the face. While most of the current face recognition methods are not optimized to handle occlusions, there have been a few attempts to improve robustness directly in the training stage. Unlike those, we propose to study the effect of generative face completion on the recognition. We offer a face completion encoder-decoder, based on a convolutional operator with a gating mechanism, trained with an ample set of face occlusions. To systematically evaluate the impact of realistic occlusions on recognition, we propose to play the occlusion game: we render 3D objects onto different face parts, providing precious knowledge of what the impact is of effectively removing those occlusions. Extensive experiments on the Labeled Faces in the Wild (LFW), and its more difficult variant LFW-BLUFR, testify that face completion is able to partially restore face perception in machine vision systems for improved recognition.
To launch black-box attacks against a Deep Neural Network (DNN) based Face Recognition (FR) system, one needs to build textit{substitute} models to simulate the target model, so the adversarial examples discovered from substitute models could also mislead the target model. Such textit{transferability} is achieved in recent studies through querying the target model to obtain data for training the substitute models. A real-world target, likes the FR system of law enforcement, however, is less accessible to the adversary. To attack such a system, a substitute model with similar quality as the target model is needed to identify their common defects. This is hard since the adversary often does not have the enough resources to train such a powerful model (hundreds of millions of images and rooms of GPUs are needed to train a commercial FR system). We found in our research, however, that a resource-constrained adversary could still effectively approximate the target models capability to recognize textit{specific} individuals, by training textit{biased} substitute models on additional images of those victims whose identities the attacker want to cover or impersonate. This is made possible by a new property we discovered, called textit{Nearly Local Linearity} (NLL), which models the observation that an ideal DNN model produces the image representations (embeddings) whose distances among themselves truthfully describe the human perception of the differences among the input images. By simulating this property around the victims images, we significantly improve the transferability of black-box impersonation attacks by nearly 50%. Particularly, we successfully attacked a commercial system trained over 20 million images, using 4 million images and 1/5 of the training time but achieving 62% transferability in an impersonation attack and 89% in a dodging attack.
The proliferation of automated facial recognition in various commercial and government sectors has caused significant privacy concerns for individuals. A recent and popular approach to address these privacy concerns is to employ evasion attacks against the metric embedding networks powering facial recognition systems. Face obfuscation systems generate imperceptible perturbations, when added to an image, cause the facial recognition system to misidentify the user. The key to these approaches is the generation of perturbations using a pre-trained metric embedding network followed by their application to an online system, whose model might be proprietary. This dependence of face obfuscation on metric embedding networks, which are known to be unfair in the context of facial recognition, surfaces the question of demographic fairness -- textit{are there demographic disparities in the performance of face obfuscation systems?} To address this question, we perform an analytical and empirical exploration of the performance of recent face obfuscation systems that rely on deep embedding networks. We find that metric embedding networks are demographically aware; they cluster faces in the embedding space based on their demographic attributes. We observe that this effect carries through to the face obfuscation systems: faces belonging to minority groups incur reduced utility compared to those from majority groups. For example, the disparity in average obfuscation success rate on the online Face++ API can reach up to 20 percentage points. Further, for some demographic groups, the average perturbation size increases by up to 17% when choosing a target identity belonging to a different demographic group versus the same demographic group. Finally, we present a simple analytical model to provide insights into these phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا