No Arabic abstract
It was shown recently, building on work of Alexakis, Balehowksy, and Nachman that the geometry of (some portion of) a manifold with boundary is uniquely fixed by the areas of a foliation of two-dimensional disk-shaped surfaces anchored to the boundary. In the context of AdS/CFT, this implies that (a portion of) a four-dimensional bulk geometry can be fixed uniquely from the entanglement entropies of disk-shaped boundary regions, subject to several constraints. In this Note, we loosen some of these constraints, in particular allowing for the bulk foliation of extremal surfaces to be local and removing the constraint of disk topology; these generalizations ensure uniqueness of more of the deep bulk geometry by allowing for e.g. surfaces anchored on disconnected asymptotic boundaries, or HRT surfaces past a phase transition. We also explore in more depth the generality of the local foliation requirement, showing that even in a highly dynamical geometry like AdS-Vaidya it is satisfied.
Quantum extremal surfaces are central to the connection between quantum information theory and quantum gravity and they have played a prominent role in the recent progress on the information paradox. We initiate a program to systematically link these surfaces to the microscopic data of the dual conformal field theory, namely the scaling dimensions of local operators and their OPE coefficients. We consider CFT states obtained by acting on the vacuum with single-trace operators, which are dual to one-particle states of the bulk theory. Focusing on AdS$_3$/CFT$_2$, we compute the CFT entanglement entropy to second order in the large $c$ expansion where quantum extremality becomes important and match it to the expectation value of the bulk area operator. We show that to this order, the Virasoro identity block contributes solely to the area operator.
Information theoretic ideas have provided numerous insights in the progress of fundamental physics, especially in our pursuit of quantum gravity. In particular, the holographic entanglement entropy is a very useful tool in studying AdS/CFT, and its efficacy is manifested in the recent black hole page curve calculation. On the other hand, the one-shot information theoretic entropies, such as the smooth min/max-entropies, are less discussed in AdS/CFT. They are however more fundamental entropy measures from the quantum information perspective and should also play pivotal roles in holography. We combine the technical methods from both quantum information and quantum gravity to put this idea on firm grounds. In particular, we study the quantum extremal surface (QES) prescription that was recently revised to highlight the significance of one-shot entropies in characterizing the QES phase transition. Motivated by the asymptotic equipartition property (AEP), we derive the refined quantum extremal surface prescription for fixed-area states via a novel AEP replica trick, demonstrating the synergy between quantum information and quantum gravity. Our path integral derivation suggests that the refinement applies beyond AdS/CFT, and we confirm it in a black hole toy model by showing that the Page curve there receives a large correction that is consistent with the refined QES prescription.
We calculate the shear viscosity of strongly coupled field theories dual to Gauss-Bonnet gravity at zero temperature with nonzero chemical potential. We find that the ratio of the shear viscosity over the entropy density is $1/4pi$, which is in accordance with the zero temperature limit of the ratio at nonzero temperatures. We also calculate the DC conductivity for this system at zero temperature and find that the real part of the DC conductivity vanishes up to a delta function, which is similar to the result in Einstein gravity. We show that at zero temperature, we can still have the conclusion that the shear viscosity is fully determined by the effective coupling of transverse gravitons in a kind of theories that the effective action of transverse gravitons can be written into a form of minimally coupled scalars with a deformed effective coupling.
Using the symmetry of the near-horizon geometry and applying quantum field theory of a complex scalar field, we study the spontaneous pair production of charged scalars from near-extremal rotating, electrically and/or magnetically charged black holes. Analytical expressions for pair production, vacuum persistence and absorption cross section are found, and the spectral distribution is given a thermal interpretation. The pair production in near-extremal black holes has a factorization into the Schwinger effect in AdS and Schwinger effect in Rindler space, measuring the deviational from extremality. The associated holographical correspondence is confirmed at the 2-point function level by comparing the absorption cross section ratio as well as the pair production rate both from the gravity and the conformal field theories. The production of monopoles is discussed.
I revisit the calculation of infinite-dimensional symmetries that emerge in the vicinity of isolated horizons. I focus the attention on extremal black holes, for which the isometry algebra that preserves a sensible set of asymptotic boundary conditions at the horizon strictly includes the BMS algebra. The conserved charges that correspond to this BMS sector, however, reduce to those of superrotation, generating only two copies of Witt algebra. For more general horizon isometries, in contrast, the charge algebra does include both Witt and supertranslations, being similar to BMS but s.str. differing from it. This work has been prepared for the proceedings of the XXII Simposio Sofichi 2020, held in Chile in November 2020. The material herein is based on my work in collaboration with Laura Donnay, Hernan Gonzalez and Miguel Pino, and it is included in arXiv:1511.08687 and arXiv:1607.05703.