Do you want to publish a course? Click here

The refined quantum extremal surface prescription from the asymptotic equipartition property

210   0   0.0 ( 0 )
 Added by Jinzhao Wang
 Publication date 2021
  fields Physics
and research's language is English
 Authors Jinzhao Wang




Ask ChatGPT about the research

Information theoretic ideas have provided numerous insights in the progress of fundamental physics, especially in our pursuit of quantum gravity. In particular, the holographic entanglement entropy is a very useful tool in studying AdS/CFT, and its efficacy is manifested in the recent black hole page curve calculation. On the other hand, the one-shot information theoretic entropies, such as the smooth min/max-entropies, are less discussed in AdS/CFT. They are however more fundamental entropy measures from the quantum information perspective and should also play pivotal roles in holography. We combine the technical methods from both quantum information and quantum gravity to put this idea on firm grounds. In particular, we study the quantum extremal surface (QES) prescription that was recently revised to highlight the significance of one-shot entropies in characterizing the QES phase transition. Motivated by the asymptotic equipartition property (AEP), we derive the refined quantum extremal surface prescription for fixed-area states via a novel AEP replica trick, demonstrating the synergy between quantum information and quantum gravity. Our path integral derivation suggests that the refinement applies beyond AdS/CFT, and we confirm it in a black hole toy model by showing that the Page curve there receives a large correction that is consistent with the refined QES prescription.



rate research

Read More

The classical asymptotic equipartition property is the statement that, in the limit of a large number of identical repetitions of a random experiment, the output sequence is virtually certain to come from the typical set, each member of which is almost equally likely. In this paper, we prove a fully quantum generalization of this property, where both the output of the experiment and side information are quantum. We give an explicit bound on the convergence, which is independent of the dimensionality of the side information. This naturally leads to a family of Renyi-like quantum conditional entropies, for which the von Neumann entropy emerges as a special case.
137 - Tianyi Li , Ma-Ke Yuan , Yang Zhou 2021
Defect extremal surface is defined by extremizing the Ryu-Takayanagi formula corrected by the quantum defect theory. This is interesting when the AdS bulk contains a defect brane (or string). We introduce a defect extremal surface formula for reflected entropy, which is a mixed state generalization of entanglement entropy measure. Based on a decomposition procedure of an AdS bulk with a brane, we demonstrate the equivalence between defect extremal surface formula and island formula for reflected entropy in AdS$_3$/BCFT$_2$. We also compute the evolution of reflected entropy in evaporating black hole model and find that defect extremal surface formula agrees with island formula.
Based on our recent work on the discretization of the radial AdS$_2$ geometry of extremal BH horizons,we present a toy model for the chaotic unitary evolution of infalling single particle wave packets. We construct explicitly the eigenstates and eigenvalues for the single particle dynamics for an observer falling into the BH horizon, with time evolution operator the quantum Arnold cat map (QACM). Using these results we investigate the validity of the eigenstate thermalization hypothesis (ETH), as well as that of the fast scrambling time bound (STB). We find that the QACM, while possessing a linear spectrum, has eigenstates, which are random and satisfy the assumptions of the ETH. We also find that the thermalization of infalling wave packets in this particular model is exponentially fast, thereby saturating the STB, under the constraint that the finite dimension of the single--particle Hilbert space takes values in the set of Fibonacci integers.
In this paper, by using Verlindes formalism and a modified Padmanabhans prescription, we have obtained the lowest order quantum correction to the gravitational acceleration and MOND-type theory by considering a nonzero difference between the number of bits of the holographic screen and number of bits of the holographic screen that satisfy the equipartition theorem. We will also carry out a phase transition and critical phenomena analysis in MOND-type theory where critical exponents are obtained.
Quantum extremal surfaces are central to the connection between quantum information theory and quantum gravity and they have played a prominent role in the recent progress on the information paradox. We initiate a program to systematically link these surfaces to the microscopic data of the dual conformal field theory, namely the scaling dimensions of local operators and their OPE coefficients. We consider CFT states obtained by acting on the vacuum with single-trace operators, which are dual to one-particle states of the bulk theory. Focusing on AdS$_3$/CFT$_2$, we compute the CFT entanglement entropy to second order in the large $c$ expansion where quantum extremality becomes important and match it to the expectation value of the bulk area operator. We show that to this order, the Virasoro identity block contributes solely to the area operator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا