No Arabic abstract
Reasoning about human motion is a core component of modern human-robot interactive systems. In particular, one of the main uses of behavior prediction in autonomous systems is to inform robot motion planning and control. However, a majority of planning and control algorithms reason about system dynamics rather than the predicted agent tracklets (i.e., ordered sets of waypoints) that are commonly output by trajectory forecasting methods, which can hinder their integration. Towards this end, we propose Mixtures of Affine Time-varying Systems (MATS) as an output representation for trajectory forecasting that is more amenable to downstream planning and control use. Our approach leverages successful ideas from probabilistic trajectory forecasting works to learn dynamical system representations that are well-studied in the planning and control literature. We integrate our predictions with a proposed multimodal planning methodology and demonstrate significant computational efficiency improvements on a large-scale autonomous driving dataset.
We address multi-modal trajectory forecasting of agents in unknown scenes by formulating it as a planning problem. We present an approach consisting of three models; a goal prediction model to identify potential goals of the agent, an inverse reinforcement learning model to plan optimal paths to each goal, and a trajectory generator to obtain future trajectories along the planned paths. Analysis of predictions on the Stanford drone dataset, shows generalizability of our approach to novel scenes.
Human trajectory forecasting in crowds, at its core, is a sequence prediction problem with specific challenges of capturing inter-sequence dependencies (social interactions) and consequently predicting socially-compliant multimodal distributions. In recent years, neural network-based methods have been shown to outperform hand-crafted methods on distance-based metrics. However, these data-driven methods still suffer from one crucial limitation: lack of interpretability. To overcome this limitation, we leverage the power of discrete choice models to learn interpretable rule-based intents, and subsequently utilise the expressibility of neural networks to model scene-specific residual. Extensive experimentation on the interaction-centric benchmark TrajNet++ demonstrates the effectiveness of our proposed architecture to explain its predictions without compromising the accuracy.
Motion planning for multi-jointed robots is challenging. Due to the inherent complexity of the problem, most existing works decompose motion planning as easier subproblems. However, because of the inconsistent performance metrics, only sub-optimal solution can be found by decomposition based approaches. This paper presents an optimal control based approach to address the path planning and trajectory planning subproblems simultaneously. Unlike similar works which either ignore robot dynamics or require long computation time, an efficient numerical method for trajectory optimization is presented in this paper for motion planning involving complicated robot dynamics. The efficiency and effectiveness of the proposed approach is shown by numerical results. Experimental results are used to show the feasibility of the presented planning algorithm.
Efficient behavior and trajectory planning is one of the major challenges for automated driving. Especially intersection scenarios are very demanding due to their complexity arising from the variety of maneuver possibilities and other traffic participants. A key challenge is to generate behaviors which optimize the comfort and progress of the ego vehicle but at the same time are not too aggressive towards other traffic participants. In order to maintain real time capability for courteous behavior and trajectory planning, an efficient formulation of the optimal control problem and corresponding solving algorithms are required. Consequently, a novel planning framework is presented which considers comfort and progress as well as the courtesy of actions in a graph-based behavior planning module. Utilizing the low level trajectory generation, the behavior result can be further optimized for driving comfort while satisfying constraints over the whole planning horizon. According experiments show the practicability and real time capability of the framework.
The motion planners used in self-driving vehicles need to generate trajectories that are safe, comfortable, and obey the traffic rules. This is usually achieved by two modules: behavior planner, which handles high-level decisions and produces a coarse trajectory, and trajectory planner that generates a smooth, feasible trajectory for the duration of the planning horizon. These planners, however, are typically developed separately, and changes in the behavior planner might affect the trajectory planner in unexpected ways. Furthermore, the final trajectory outputted by the trajectory planner might differ significantly from the one generated by the behavior planner, as they do not share the same objective. In this paper, we propose a jointly learnable behavior and trajectory planner. Unlike most existing learnable motion planners that address either only behavior planning, or use an uninterpretable neural network to represent the entire logic from sensors to driving commands, our approach features an interpretable cost function on top of perception, prediction and vehicle dynamics, and a joint learning algorithm that learns a shared cost function employed by our behavior and trajectory components. Experiments on real-world self-driving data demonstrate that jointly learned planner performs significantly better in terms of both similarity to human driving and other safety metrics, compared to baselines that do not adopt joint behavior and trajectory learning.