Do you want to publish a course? Click here

Graph-to-Sequence Neural Machine Translation

100   0   0.0 ( 0 )
 Added by Sufeng Duan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Neural machine translation (NMT) usually works in a seq2seq learning way by viewing either source or target sentence as a linear sequence of words, which can be regarded as a special case of graph, taking words in the sequence as nodes and relationships between words as edges. In the light of the current NMT models more or less capture graph information among the sequence in a latent way, we present a graph-to-sequence model facilitating explicit graph information capturing. In detail, we propose a graph-based SAN-based NMT model called Graph-Transformer by capturing information of subgraphs of different orders in every layers. Subgraphs are put into different groups according to their orders, and every group of subgraphs respectively reflect different levels of dependency between words. For fusing subgraph representations, we empirically explore three methods which weight different groups of subgraphs of different orders. Results of experiments on WMT14 English-German and IWSLT14 German-English show that our method can effectively boost the Transformer with an improvement of 1.1 BLEU points on WMT14 English-German dataset and 1.0 BLEU points on IWSLT14 German-English dataset.



rate research

Read More

Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese--English and News Commentary Japanese--Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods only consider a few number of previous sentences. How to make use of the whole document as global contexts is still a challenge. To address this issue, we hypothesize that a document can be represented as a graph that connects relevant contexts regardless of their distances. We employ several types of relations, including adjacency, syntactic dependency, lexical consistency, and coreference, to construct the document graph. Then, we incorporate both source and target graphs into the conventional Transformer architecture with graph convolutional networks. Experiments on various NMT benchmarks, including IWSLT English--French, Chinese-English, WMT English--German and Opensubtitle English--Russian, demonstrate that using document graphs can significantly improve the translation quality. Extensive analysis verifies that the document graph is beneficial for capturing discourse phenomena.
Sequence-to-sequence (seq2seq) problems such as machine translation are bidirectional, which naturally derive a pair of directional tasks and two directional learning signals. However, typical seq2seq neural networks are {em simplex} that only model one unidirectional task, which cannot fully exploit the potential of bidirectional learning signals from parallel data. To address this issue, we propose a {em duplex} seq2seq neural network, REDER (Reversible Duplex Transformer), and apply it to machine translation. The architecture of REDER has two ends, each of which specializes in a language so as to read and yield sequences in that language. As a result, REDER can simultaneously learn from the bidirectional signals, and enables {em reversible machine translation} by simply flipping the input and output ends, Experiments on widely-used machine translation benchmarks verify that REDER achieves the first success of reversible machine translation, which helps obtain considerable gains over several strong baselines.
In this paper, we propose Neural Phrase-to-Phrase Machine Translation (NP$^2$MT). Our model uses a phrase attention mechanism to discover relevant input (source) segments that are used by a decoder to generate output (target) phrases. We also design an efficient dynamic programming algorithm to decode segments that allows the model to be trained faster than the existing neural phrase-based machine translation method by Huang et al. (2018). Furthermore, our method can naturally integrate with external phrase dictionaries during decoding. Empirical experiments show that our method achieves comparable performance with the state-of-the art methods on benchmark datasets. However, when the training and testing data are from different distributions or domains, our method performs better.
202 - Liangyou Li , Andy Way , Qun Liu 2021
We present graph-based translation models which translate source graphs into target strings. Source graphs are constructed from dependency trees with extra links so that non-syntactic phrases are connected. Inspired by phrase-based models, we first introduce a translation model which segments a graph into a sequence of disjoint subgraphs and generates a translation by combining subgraph translations left-to-right using beam search. However, similar to phrase-based models, this model is weak at phrase reordering. Therefore, we further introduce a model based on a synchronous node replacement grammar which learns recursive translation rules. We provide two implementations of the model with different restrictions so that source graphs can be parsed efficiently. Experiments on Chinese--English and German--English show that our graph-based models are significantly better than corresponding sequence- and tree-based baselines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا