No Arabic abstract
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods only consider a few number of previous sentences. How to make use of the whole document as global contexts is still a challenge. To address this issue, we hypothesize that a document can be represented as a graph that connects relevant contexts regardless of their distances. We employ several types of relations, including adjacency, syntactic dependency, lexical consistency, and coreference, to construct the document graph. Then, we incorporate both source and target graphs into the conventional Transformer architecture with graph convolutional networks. Experiments on various NMT benchmarks, including IWSLT English--French, Chinese-English, WMT English--German and Opensubtitle English--Russian, demonstrate that using document graphs can significantly improve the translation quality. Extensive analysis verifies that the document graph is beneficial for capturing discourse phenomena.
Neural machine translation (NMT) usually works in a seq2seq learning way by viewing either source or target sentence as a linear sequence of words, which can be regarded as a special case of graph, taking words in the sequence as nodes and relationships between words as edges. In the light of the current NMT models more or less capture graph information among the sequence in a latent way, we present a graph-to-sequence model facilitating explicit graph information capturing. In detail, we propose a graph-based SAN-based NMT model called Graph-Transformer by capturing information of subgraphs of different orders in every layers. Subgraphs are put into different groups according to their orders, and every group of subgraphs respectively reflect different levels of dependency between words. For fusing subgraph representations, we empirically explore three methods which weight different groups of subgraphs of different orders. Results of experiments on WMT14 English-German and IWSLT14 German-English show that our method can effectively boost the Transformer with an improvement of 1.1 BLEU points on WMT14 English-German dataset and 1.0 BLEU points on IWSLT14 German-English dataset.
Document-level MT models are still far from satisfactory. Existing work extend translation unit from single sentence to multiple sentences. However, study shows that when we further enlarge the translation unit to a whole document, supervised training of Transformer can fail. In this paper, we find such failure is not caused by overfitting, but by sticking around local minima during training. Our analysis shows that the increased complexity of target-to-source attention is a reason for the failure. As a solution, we propose G-Transformer, introducing locality assumption as an inductive bias into Transformer, reducing the hypothesis space of the attention from target to source. Experiments show that G-Transformer converges faster and more stably than Transformer, achieving new state-of-the-art BLEU scores for both non-pretraining and pre-training settings on three benchmark datasets.
Discourse context has been proven useful when translating documents. It is quite a challenge to incorporate long document context in the prevailing neural machine translation models such as Transformer. In this paper, we propose multi-resolutional (MR) Doc2Doc, a method to train a neural sequence-to-sequence model for document-level translation. Our trained model can simultaneously translate sentence by sentence as well as a document as a whole. We evaluate our method and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that MR Doc2Doc outperforms sentence-level models and previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
We show that Bayes rule provides an effective mechanism for creating document translation models that can be learned from only parallel sentences and monolingual documents---a compelling benefit as parallel documents are not always available. In our formulation, the posterior probability of a candidate translation is the product of the unconditional (prior) probability of the candidate output document and the reverse translation probability of translating the candidate output back into the source language. Our proposed model uses a powerful autoregressive language model as the prior on target language documents, but it assumes that each sentence is translated independently from the target to the source language. Crucially, at test time, when a source document is observed, the document language model prior induces dependencies between the translations of the source sentences in the posterior. The models independence assumption not only enables efficient use of available data, but it additionally admits a practical left-to-right beam-search algorithm for carrying out inference. Experiments show that our model benefits from using cross-sentence context in the language model, and it outperforms existing document translation approaches.