Do you want to publish a course? Click here

Revisiting the Gruss Inequality

80   0   0.0 ( 0 )
 Added by Hamid Reza Moradi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this article, we explore the celebrated Gr{u}ss inequality, where we present a new approach using the Gr{u}ss inequality to obtain new refinements of operator means inequalities. We also present several operator Gr{u}ss-type inequalities with applications to the numerical radius and entropies.



rate research

Read More

110 - Minghua Lin , Gord Sinnamon 2020
Hadamards determinant inequality was refined and generalized by Zhang and Yang in [Acta Math. Appl. Sinica 20 (1997) 269-274]. Some special cases of the result were rediscovered recently by Rozanski, Witula and Hetmaniok in [Linear Algebra Appl. 532 (2017) 500-511]. We revisit the result in the case of positive semidefinite matrices, giving a new proof in terms of majorization and a complete description of the conditions for equality in the positive definite case. We also mention a block extension, which makes use of a result of Thompson in the 1960s.
In a recent work, Moslehian and Rajic have shown that the Gruss inequality holds for unital n-positive linear maps $phi:mathcal A rightarrow B(H)$, where $mathcal A$ is a unital C*-algebra and H is a Hilbert space, if $n ge 3$. They also demonstrate that the inequality fails to hold, in general, if $n = 1$ and question whether the inequality holds if $n=2$. In this article, we provide an affirmative answer to this question.
In 2006 Carbery raised a question about an improvement on the naive norm inequality $|f+g|_p^p leq 2^{p-1}(|f|_p^p + |g|_p^p)$ for two functions in $L^p$ of any measure space. When $f=g$ this is an equality, but when the supports of $f$ and $g$ are disjoint the factor $2^{p-1}$ is not needed. Carberys question concerns a proposed interpolation between the two situations for $p>2$. The interpolation parameter measuring the overlap is $|fg|_{p/2}$. We prove an inequality of this type that is stronger than the one Carbery proposed. Moreover, our stronger inequalities are valid for all $p$.
We survey several significant results on the Bohr inequality and presented its generalizations in some new approaches. These are some Bohr type inequalities of Hilbert space operators related to the matrix order and the Jensen inequality. An eigenvalue extension of Bohrs inequality is discussed as well.
In this work we provide the best constants of the multiple Khintchine inequality. This allows us, among other results, to obtain the best constants of the mixed $left( ell_{frac{p}{p-1}},ell_{2}right) $-Littlewood inequality, thus ending completely a work started by Pellegrino in cite{pell}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا