No Arabic abstract
A ballot permutation is a permutation $pi$ such that in any prefix of $pi$ the descent number is not more than the ascent number. By using a reversal concatenation map, we give a formula for the joint distribution (pk, des) of the peak and descent statistics over ballot permutations, and connect this distribution and the joint distribution (pk, dp, des) of the peak, depth, and descent statistics over ordinary permutations in terms of generating functions. As corollaries, we obtain several formulas for the bivariate generating function for (i) the peak statistic over ballot permutations,(ii) the descent statistic over ballot permutations, and (iii) the depth statistic over ordinary permutations. In particular, we confirm Spiros conjecture which finds the equidistribution of the descent statistic for ballot permutations and an analogue of the descent statistic for odd order permutations.
A ballot permutation is a permutation {pi} such that in any prefix of {pi} the descent number is not more than the ascent number. In this article, we obtained a formula in close form for the multivariate generating function of {A(n,d,j)}, which denote the number of permutations of length n with d descents and j as the first letter. Besides, by a series of calculations with generatingfunctionology, we confirm a recent conjecture of Wang and Zhang for ballot permutations.
A permutation whose any prefix has no more descents than ascents is called a ballot permutation. In this paper, we present a decomposition of ballot permutations that enables us to construct a bijection between ballot permutations and odd order permutations, which proves a set-valued extension of a conjecture due to Spiro using the statistic of peak values. This bijection also preserves the neighbors of the largest letter in permutations and thus resolves a refinement of Spiro s conjecture proposed by Wang and Zhang. Our decomposition can be extended to well-labelled positive paths, a class of generalized ballot permutations arising from polytope theory, that were enumerated by Bernardi, Duplantier and Nadeau. We will also investigate the enumerative aspect of ballot permutations avoiding a single pattern of length 3 and establish a connection between 213-avoiding ballot permutations and Gessel walks.
Using a result of Gessel and Reutenauer, we find a simple formula for the number of cyclic permutations with a given descent set, by expressing it in terms of ordinary descent numbers (i.e., those counting all permutations with a given descent set). We then use this formula to show that, for almost all sets $I subseteq [n-1]$, the fraction of size-$n$ permutations with descent set $I$ which are $n$-cycles is asymptotically $1/n$. As a special case, we recover a result of Stanley for alternating cycles. We also use our formula to count the cycles that do not have two consecutive descents.
Babson and Steingr{i}msson introduced generalized permutation patterns and showed that most of the Mahonian statistics in the literature can be expressed by the combination of generalized pattern functions. Particularly, they defined a new Mahonian statistic in terms of generalized pattern functions, which is denoted $stat$. Recently, Amini investigated the equidistributions of these Mahonian statistics over sets of pattern avoiding permutations. Moreover, he posed several conjectures. In this paper, we construct a bijection from $S_n(213)$ to $S_n(231)$, which maps the statistic $(maj,stat)$ to the statistic $(stat,maj)$. This allows us to give solutions to some of Aminis conjectures.
We construct bijections to show that two pairs of sextuple set-valued statistics of permutations are equidistributed on symmetric groups. This extends a recent result of Sokal and the second author valid for integer-valued statistics as well as a previous result of Foata and Han for bivariable set-valued statistics.