Do you want to publish a course? Click here

Further equidistribution of set-valued statistics on permutations

327   0   0.0 ( 0 )
 Added by Jiang Zeng
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We construct bijections to show that two pairs of sextuple set-valued statistics of permutations are equidistributed on symmetric groups. This extends a recent result of Sokal and the second author valid for integer-valued statistics as well as a previous result of Foata and Han for bivariable set-valued statistics.



rate research

Read More

We study statistics on ordered set partitions whose generating functions are related to $p,q$-Stirling numbers of the second kind. The main purpose of this paper is to provide bijective proofs of all the conjectures of stein (Arxiv:math.CO/0605670). Our basic idea is to encode ordered partitions by a kind of path diagrams and explore the rich combinatorial properties of the latter structure. We also give a partition version of MacMahons theorem on the equidistribution of the statistics inversion number and major index on words.
152 - David G.L. Wang , T. Zhao 2020
A ballot permutation is a permutation $pi$ such that in any prefix of $pi$ the descent number is not more than the ascent number. By using a reversal concatenation map, we give a formula for the joint distribution (pk, des) of the peak and descent statistics over ballot permutations, and connect this distribution and the joint distribution (pk, dp, des) of the peak, depth, and descent statistics over ordinary permutations in terms of generating functions. As corollaries, we obtain several formulas for the bivariate generating function for (i) the peak statistic over ballot permutations,(ii) the descent statistic over ballot permutations, and (iii) the depth statistic over ordinary permutations. In particular, we confirm Spiros conjecture which finds the equidistribution of the descent statistic for ballot permutations and an analogue of the descent statistic for odd order permutations.
236 - Samantha Dahlberg 2015
A set partition $sigma$ of $[n]={1,dots,n}$ contains another set partition $pi$ if restricting $sigma$ to some $Ssubseteq[n]$ and then standardizing the result gives $pi$. Otherwise we say $sigma$ avoids $pi$. For all sets of patterns consisting of partitions of $[3]$, the sizes of the avoidance classes were determined by Sagan and by Goyt. Set partitions are in bijection with restricted growth functions (RGFs) for which Wachs and White defined four fundamental statistics. We consider the distributions of these statistics over various avoidance classes, thus obtaining multivariate analogues of the previously cited cardinality results. This is the first in-depth study of such distributions. We end with a list of open problems.
Using a result of Gessel and Reutenauer, we find a simple formula for the number of cyclic permutations with a given descent set, by expressing it in terms of ordinary descent numbers (i.e., those counting all permutations with a given descent set). We then use this formula to show that, for almost all sets $I subseteq [n-1]$, the fraction of size-$n$ permutations with descent set $I$ which are $n$-cycles is asymptotically $1/n$. As a special case, we recover a result of Stanley for alternating cycles. We also use our formula to count the cycles that do not have two consecutive descents.
In this paper we generalize permutations to plane permutations. We employ this framework to derive a combinatorial proof of a result of Zagier and Stanley, that enumerates the number of $n$-cycles $omega$, for which $omega(12cdots n)$ has exactly $k$ cycles. This quantity is $0$, if $n-k$ is odd and $frac{2C(n+1,k)}{n(n+1)}$, otherwise, where $C(n,k)$ is the unsigned Stirling number of the first kind. The proof is facilitated by a natural transposition action on plane permutations which gives rise to various recurrences. Furthermore we study several distance problems of permutations. It turns out that plane permutations allow to study transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. Novel connections between these different distance problems are established via plane permutations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا