Do you want to publish a course? Click here

Imaging phonon-mediated hydrodynamic flow in WTe2 with cryogenic quantum magnetometry

371   0   0.0 ( 0 )
 Added by Uri Vool
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the presence of strong interactions, electrons in condensed matter systems can behave hydrodynamically thereby exhibiting classical fluid phenomena such as vortices and Poiseuille flow. While in most conductors large screening effects minimize electron-electron interactions, hindering the search for possible hydrodynamic candidate materials, a new class of semimetals has recently been reported to exhibit strong interactions. In this work, we study the current flow in the layered semimetal tungsten ditelluride (WTe2) by imaging the local magnetic field above it using a nitrogen-vacancy (NV) defect in diamond. Our cryogenic scanning magnetometry system allows for temperature-resolved measurement with high sensitivity enabled by the long defect spin coherence. We directly measure the spatial current profile within WTe2 and find it differs substantially from the uniform profile of a Fermi liquid, indicating hydrodynamic flow. Furthermore, our temperature-resolved current profile measurements reveal an unexpected non-monotonic temperature dependence, with hydrodynamic effects strongest at ~20 K. We further elucidate this behavior via ab initio calculations of electron scattering mechanisms, which are used to extract a current profile using the electronic Boltzmann transport equation. These calculations show quantitative agreement with our measurements, capturing the non-monotonic temperature dependence. The combination of experimental and theoretical observations allows us to quantitatively infer the strength of electron-electron interactions in WTe2. We show these strong electron interactions cannot be explained by Coulomb repulsion alone and are predominantly phonon-mediated. This provides a promising avenue in the search for hydrodynamic flow and strong interactions in high carrier density materials.



rate research

Read More

Since its first isolation in 2004, graphene has been found to host a plethora of unusual electronic transport phenomena, making it a fascinating system for fundamental studies in condensed-matter physics as well as offering tremendous opportunities for future electronic and sensing devices. However, to fully realise these goals a major challenge is the ability to non-invasively image charge currents in monolayer graphene structures and devices. Typically, electronic transport in graphene has been investigated via resistivity measurements, however, such measurements are generally blind to spatial information critical to observing and studying landmark transport phenomena such as electron guiding and focusing, topological currents and viscous electron backflow in real space, and in realistic imperfect devices. Here we bring quantum imaging to bear on the problem and demonstrate high-resolution imaging of current flow in graphene structures. Our method utilises an engineered array of near-surface, atomic-sized quantum sensors in diamond, to map the vector magnetic field and reconstruct the vector current density over graphene geometries of varying complexity, from mono-ribbons to junctions, with spatial resolution at the diffraction limit and a projected sensitivity to currents as small as 1 {mu}A. The measured current maps reveal strong spatial variations corresponding to physical defects at the sub-{mu}m scale. The demonstrated method opens up an important new avenue to investigate fundamental electronic and spin transport in graphene structures and devices, and more generally in emerging two-dimensional materials and thin film systems.
A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported for the first time in an atomically thin material, monolayer WTe2. Electrical transport measurements on exfoliated samples and scanning tunneling spectroscopy on epitaxially grown monolayer islands signal the existence of edge modes with conductance approaching the quantized value. Here, we directly image the local conductivity of monolayer WTe2 devices using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, ruling out trivial conduction due to band bending or in-gap states, and is suppressed by magnetic field as expected. Interestingly, we observe additional conducting lines and rings within most samples which can be explained by edge states following boundaries between topologically trivial and non-trivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2 or other air-sensitive 2D materials. At the same time, they reveal the robustness of the QSH channels and the potential to engineer and pattern them by chemical or mechanical means in the monolayer material platform.
The photoresponse of graphene at mid-infrared frequencies is of high technological interest and is governed by fundamentally different underlying physics than the photoresponse at visible frequencies, as the energy of the photons and substrate phonons involved have comparable energies. Here we perform a spectrally resolved study of the graphene photoresponse for mid-infrared light by measuring spatially resolved photocurrent over a broad frequency range (1000-1600 cm$^{-1}$). We unveil the different mechanisms that give rise to photocurrent generation in graphene on a polar substrate. In particular, we find an enhancement of the photoresponse when the light excites bulk or surface phonons of the SiO$_2$ substrate. This work paves the way for the development of graphene-based mid-infrared thermal sensing technology.
Hydrodynamics is a general description for the flow of a fluid, and is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate. While various aspects of electron hydrodynamics were revealed in recent experiments, the fundamental spatial structure of hydrodynamic electrons, the Poiseuille flow profile, has remained elusive. In this work, we provide the first real-space imaging of Poiseuille flow of an electronic fluid, as well as visualization of its evolution from ballistic flow. Utilizing a scanning nanotube single electron transistor, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperature into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a phase diagram that characterizes the electron flow regimes. Our results provide long-sought, direct confirmation of Poiseuille flow in the solid state, and enable a new approach for exploring the rich physics of interacting electrons in real space.
We report an unconventional quantum spin Hall phase in the monolayer T$_text{d}$-WTe$_2$, which exhibits hitherto unknown features in other topological materials. The low-symmetry of the structure induces a canted spin texture in the $yz$ plane, which dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized ($2e^2/h$) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multi-probe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا