Do you want to publish a course? Click here

Canted Spin Texture and Quantum Spin Hall Effect in WTe2

239   0   0.0 ( 0 )
 Added by Jose H. Garcia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an unconventional quantum spin Hall phase in the monolayer T$_text{d}$-WTe$_2$, which exhibits hitherto unknown features in other topological materials. The low-symmetry of the structure induces a canted spin texture in the $yz$ plane, which dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized ($2e^2/h$) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multi-probe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.



rate research

Read More

A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported for the first time in an atomically thin material, monolayer WTe2. Electrical transport measurements on exfoliated samples and scanning tunneling spectroscopy on epitaxially grown monolayer islands signal the existence of edge modes with conductance approaching the quantized value. Here, we directly image the local conductivity of monolayer WTe2 devices using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, ruling out trivial conduction due to band bending or in-gap states, and is suppressed by magnetic field as expected. Interestingly, we observe additional conducting lines and rings within most samples which can be explained by edge states following boundaries between topologically trivial and non-trivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2 or other air-sensitive 2D materials. At the same time, they reveal the robustness of the QSH channels and the potential to engineer and pattern them by chemical or mechanical means in the monolayer material platform.
Evidence for the quantum spin Hall (QSH) effect has been reported in several experimental systems in the form of approximately quantized edge conductance. However, the most fundamental feature of the QSH effect, spin-momentum locking in the edge channels, has never been demonstrated experimentally. Here, we report clear evidence for spin-momentum locking in the edge channels of monolayer WTe2, thought to be a two-dimensional topological insulator (2D TI). We observe that the edge conductance is controlled by the component of an applied magnetic field perpendicular to a particular axis, which we identify as the spin axis. The axis is the same for all edges, situated in the mirror plane perpendicular to the tungsten chains at 40$pm$2{deg} to the layer normal, implying that the spin-orbit coupling is inherited from the bulk band structure. We show that this finding is consistent with theory if the band-edge orbitals are taken to have like parity. We conclude that this parity assignment is correct and that both edge states and bulk bands in monolayer WTe2 share the same simple spin structure. Combined with other known features of the edge states this establishes spin-momentum locking, and therefore that monolayer WTe2 is truly a natural 2D TI.
81 - J. Kipp , K. Samanta , F. R. Lux 2020
The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and crystal Hall effects, the topological Hall effect in non-coplanar antiferromagnets has been a subject of intensive research in the past decades. Here, we uncover a new flavour of the anomalous Hall effect in canted spin systems. Using advanced theoretical tools we demonstrate that upon canting, the anomalous Hall effect acquires a contribution which is sensitive to the sense of imprinted vector chirality among spins. We explore the origins and basic properties of corresponding chiral Hall effect, and closely tie it to the symmetry properties of the system. Our findings suggest that the chiral Hall effect and corresponding chiral magneto-optical effects emerge as novel versatile tools in characterizing an interplay of structure and chirality in complex magnets, as well as in tracking their chiral dynamics and fluctuations.
Dirac points in two-dimensional electronic structures are a source for topological electronic states due to the $pm pi$ Berry phase that they sustain. Here we show that two rutile multilayers (namely (WO$_2$)$_2$/(ZrO$_2$)$_n$ and (PtO$_2$)$_2$/(ZrO$_2$)$_n$, where an active bilayer is sandwiched by a thick enough (n=6 is sufficient) band insulating substrate, show semi-metallic Dirac dispersions with a total of four Dirac cones along the $Gamma-M$ direction. These become gapped upon the introduction of spin-orbit coupling, giving rise to an insulating ground state comprising four edge states. We discuss the origin of the lack of topological protection in terms of the valley spin-Chern numbers and the multiplicity of Dirac points. We show with a model Hamiltonian that mirror-symmetry breaking would be capable of creating a quantum phase transition to a strong topological insulator, with a single Kramers pair per edge.
136 - Y. Li , M. Amado , T. Hyart 2019
In the quantum Hall regime of graphene, antiferromagnetic and spin-polarized ferromagnetic states at the zeroth Landau level compete, leading to a canted antiferromagnetic state depending on the direction and magnitude of an applied magnetic field. Here, we investigate this transition at 2.7 K in graphene Hall bars that are proximity coupled to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$. From nonlocal transport measurements, we demonstrate an induced magnetic exchange field in graphene, which lowers the magnetic field required to modulate the magnetic state in graphene. These results show that a magnetic proximity effect in graphene is an important ingredient for the development of two-dimensional materials in which it is desirable for ordered states of matter to be tunable with relatively small applied magnetic fields (> 6 T).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا