Do you want to publish a course? Click here

The stellar populations of high-redshift dwarf galaxies

91   0   0.0 ( 0 )
 Added by Viola Gelli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use high-resolution ($approx 10$ pc), zoom-in simulations of a typical (stellar mass $M_starsimeq10^{10}M_odot$) Lyman Break Galaxy (LBG) at $zsimeq 6$ to investigate the stellar populations of its six dwarf galaxy satellites, whose stellar [gas] masses are in the range $log (M_star/M_odot) simeq 6-9$ [$log (M_{gas}/M_odot) simeq4.3-7.75$]. The properties and evolution of satellites show no dependence on the distance from the central massive LBG ($< 11.5$ kpc). Instead, their star formation and chemical enrichment histories are tightly connected their stellar (and sub-halo) mass. High-mass dwarf galaxies ($rm M_star gtrsim 5times 10^8 M_odot$) experience a long history of star formation, characterised by many merger events. Lower-mass systems go through a series of short star formation episodes, with no signs of mergers; their star formation activity starts relatively late ($zapprox 7$), and it is rapidly quenched by internal stellar feedback. In spite of the different evolutionary patterns, all satellites show a spherical morphology, with ancient and more metal-poor stars located towards the inner regions. All six dwarf satellites experienced high star formation rate ($rm >5,M_odot yr ^{-1}$) bursts, which can be detected by JWST while targeting high-$z$ LBGs.



rate research

Read More

In this paper we present our studies on the stellar populations and star formation histories (SFHs) for the Reines et al. sample of 136 dwarf galaxies which host active galactic nuclei (AGNs), selected from the Sloan Digital Sky Survey Data Release 8. We derive stellar populations and reconstruct SFHs for these AGN-host dwarfs using the stellar population synthesis code STARLIGHT. Our results suggest that these AGN-host dwarfs have assembled their stellar masses within a narrow period of time with the stellar mass-weighted ages in the range of $10^9-10^{10}$yr, but show a wide diversity of SFHs with the luminosity-weighted stellar ages in the range of $10^7-10^{10}$yr. The old population ($t>10^9$yr) contributes most to the galaxy light for the majority of the sample; the young population ($t<10^8$yr) also appears in significant but widely varying fractions, while the intermediate-age population ($10^8<t<10^9$yr) in general contributes less to the optical continuum at 4020 $r{A}$. We also find that these dwarfs follow a similar mass-metallicity relation to normal star-forming galaxies, indicating that AGNs have little effect on the chemical evolution of the host galaxy. We further investigate the relation between the derived SFHs and morphology of the host galaxy, and find no correlation. Comparing the SFHs with the luminosity of the [OIII] $lambda$5007 line ($L_{rm [OIII]}$), we find that there exists a mild correlation when $L_{rm [OIII]} > 10^{39}$erg s$^{-1}$, indicating that there is a physical connection between star formation and AGN activities in these dwarf galaxies.
110 - C. C. Steidel 2016
We present a combined analysis of rest-frame far-UV (1000-2000 A) and rest-frame optical (3600-7000 A) composite spectra formed from very deep observations of a sample of 30 star-forming galaxies with z=2.4+/-0.1, selected to be representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and the excitation of the observed nebular emission, a self-consistent stellar population synthesis model must simultaneously match the details of the far-UV stellar+nebular continuum and-- when inserted as the excitation source in photoionization models-- account for all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity (Z_*/Z_{sun} ~ 0.1) but relatively high ionized gas-phase oxygen abundances (Z_{neb}/Z_{sun} ~ 0.5), can successfully match all of the observational constraints. We argue that this apparent discrepancy is naturally explained by highly super-solar O/Fe [4-5 times (O/Fe)_{sun}], expected for gas whose enrichment is dominated by the products of core-collapse supernovae. Once the correct ionizing spectrum is identified, photoionization models reproduce all of the observed strong emission line ratios, the direct T_e measurement of O/H, and allow accurate measurement of the gas-phase abundance ratios of N/O and C/O -- both of which are significantly sub-solar but, as for O/Fe, are in remarkable agreement with abundance patterns observed in Galactic thick disk, bulge, and halo stars with similar O/H. High nebular excitation is the rule at high-z (and rare at low-z) because of systematically shorter enrichment timescales (<<1 Gyr): low Fe/O environments produce harder (and longer-lived) stellar EUV spectra at a given O/H, enhanced by dramatic effects on the evolution of massive star binaries.
This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.
(Abridged) Age derivation techniques for unresolved stellar populations at high redshifts are explored using the NUV spectrum of LBDS~53W091 and LBDS~53W069. The photometry and morphology of these galaxies suggest they are early-type systems,a feature that makes them ideal test beds for the analysis of their ages and metallicities. In the analysis that is based on simple stellar population models,we find a significant degeneracy between the derived ages and metallicities both in optical+NIR photometric and NUV spectroscopic analyses. This degeneracy is not so strong for LBDS~53W069. However even in this case the stellar age cannot be constrained better than to a range roughly encompassing one third of the age of the Universe at the observed redshift. We have explored several independent population synthesis models and consistently found similar results. Broadband photometry straddling the rest-frame 4000A break is also subject to a strong age-metallicity degeneracy. The use of realistic chemical enrichment assumptions significantly helps in disentangling the degeneracy. Based on this method, we derive the average stellar age for both galaxies around 3.6-3.8 Gyr with better constraints on the youngest possible ages. From the observational point of view, the most efficient (and feasible) way to set limits on unresolved stellar populations comprises a combination of Balmer absorption lines along with either low SNR rest frame NUV spectroscopy or accurate optical and NIR photometry.
Based on MaNGA integral field unit (IFU) spectroscopy we search 60 AGN candidates, which have stellar masses $M_{star}leqslant5times10^{9}$$M_{odot}$ and show AGN ionization signatures in the BPT diagram. For these AGN candidates, we derive the spatially resolved stellar population with the stellar population synthesis code STARLIGHT and measure the gradients of the mean stellar age and metallicity. We find that the gradients of mean stellar age (metallicity) of individual AGN-host dwarfs are diverse in 0-0.5 Re, 0.5-1 Re and 0-1 Re. However, the overall behavior of the mean stellar age (metallicity) profiles tend to be flat, as the median values of the gradients are close to zero. We further study the overall behavior of the mean stellar age (metallicity) by plotting the co-added radial profiles for the AGN sample and compare with a control sample with similar stellar mass. We find that the median values of light-weighted mean stellar ages of AGN sample are as old as 2-3 ~Gyr within 2 Re,which are about 4-7 times older than those of the control sample. Meanwhile, most of the AGN candidates are low-level AGNs, as only eight sources have L[OIII]>$10^{39.5}$~erg~s$^{-1}$. Hence, the AGNs in dwarf galaxies might accelerate the evolution of galaxies by accelerating the consumption of the gas, resulting in an overall quenching of the dwarf galaxies, and the AGNs also become weak due to the lack of gas. The median values of mass-weighted mean stellar age of both samples within 2 $Re$ are similar and as old as about 10~Gyr, indicating that the stellar mass is mainly contributed by old stellar populations.The gradients of co-added mean stellar metallicity for both samples tend to be negative but close to zero, and the similar mean stellar metallicity profiles for both samples indicate that the chemical evolution of the host galaxy is not strongly influenced by the AGN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا