Do you want to publish a course? Click here

Stellar Populations of a Sample of Optically Selected AGN-host Dwarf Galaxies

422   0   0.0 ( 0 )
 Added by Wei Cai
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present our studies on the stellar populations and star formation histories (SFHs) for the Reines et al. sample of 136 dwarf galaxies which host active galactic nuclei (AGNs), selected from the Sloan Digital Sky Survey Data Release 8. We derive stellar populations and reconstruct SFHs for these AGN-host dwarfs using the stellar population synthesis code STARLIGHT. Our results suggest that these AGN-host dwarfs have assembled their stellar masses within a narrow period of time with the stellar mass-weighted ages in the range of $10^9-10^{10}$yr, but show a wide diversity of SFHs with the luminosity-weighted stellar ages in the range of $10^7-10^{10}$yr. The old population ($t>10^9$yr) contributes most to the galaxy light for the majority of the sample; the young population ($t<10^8$yr) also appears in significant but widely varying fractions, while the intermediate-age population ($10^8<t<10^9$yr) in general contributes less to the optical continuum at 4020 $r{A}$. We also find that these dwarfs follow a similar mass-metallicity relation to normal star-forming galaxies, indicating that AGNs have little effect on the chemical evolution of the host galaxy. We further investigate the relation between the derived SFHs and morphology of the host galaxy, and find no correlation. Comparing the SFHs with the luminosity of the [OIII] $lambda$5007 line ($L_{rm [OIII]}$), we find that there exists a mild correlation when $L_{rm [OIII]} > 10^{39}$erg s$^{-1}$, indicating that there is a physical connection between star formation and AGN activities in these dwarf galaxies.



rate research

Read More

Based on MaNGA integral field unit (IFU) spectroscopy we search 60 AGN candidates, which have stellar masses $M_{star}leqslant5times10^{9}$$M_{odot}$ and show AGN ionization signatures in the BPT diagram. For these AGN candidates, we derive the spatially resolved stellar population with the stellar population synthesis code STARLIGHT and measure the gradients of the mean stellar age and metallicity. We find that the gradients of mean stellar age (metallicity) of individual AGN-host dwarfs are diverse in 0-0.5 Re, 0.5-1 Re and 0-1 Re. However, the overall behavior of the mean stellar age (metallicity) profiles tend to be flat, as the median values of the gradients are close to zero. We further study the overall behavior of the mean stellar age (metallicity) by plotting the co-added radial profiles for the AGN sample and compare with a control sample with similar stellar mass. We find that the median values of light-weighted mean stellar ages of AGN sample are as old as 2-3 ~Gyr within 2 Re,which are about 4-7 times older than those of the control sample. Meanwhile, most of the AGN candidates are low-level AGNs, as only eight sources have L[OIII]>$10^{39.5}$~erg~s$^{-1}$. Hence, the AGNs in dwarf galaxies might accelerate the evolution of galaxies by accelerating the consumption of the gas, resulting in an overall quenching of the dwarf galaxies, and the AGNs also become weak due to the lack of gas. The median values of mass-weighted mean stellar age of both samples within 2 $Re$ are similar and as old as about 10~Gyr, indicating that the stellar mass is mainly contributed by old stellar populations.The gradients of co-added mean stellar metallicity for both samples tend to be negative but close to zero, and the similar mean stellar metallicity profiles for both samples indicate that the chemical evolution of the host galaxy is not strongly influenced by the AGN.
We investigate the stellar populations of a sample of Tidal Dwarf Galaxies, combining observations and evolutionary synthesis models to try and reveal their formation mechanism. On optical images we select a first sample of TDGs for which optical spectroscopy is used to measure metallicities and velocity structure. Finally, we estimate ages, burst strengths, and stellar masses from near-infrared imaging in comparison with a dedicated grid of evolutionary synthesis models, to assess if Tidal Dwarfs are formed out of collapsing gas clouds or by an accumulation of old stars from the parent galaxy or by a combination of both.
We use high-resolution ($approx 10$ pc), zoom-in simulations of a typical (stellar mass $M_starsimeq10^{10}M_odot$) Lyman Break Galaxy (LBG) at $zsimeq 6$ to investigate the stellar populations of its six dwarf galaxy satellites, whose stellar [gas] masses are in the range $log (M_star/M_odot) simeq 6-9$ [$log (M_{gas}/M_odot) simeq4.3-7.75$]. The properties and evolution of satellites show no dependence on the distance from the central massive LBG ($< 11.5$ kpc). Instead, their star formation and chemical enrichment histories are tightly connected their stellar (and sub-halo) mass. High-mass dwarf galaxies ($rm M_star gtrsim 5times 10^8 M_odot$) experience a long history of star formation, characterised by many merger events. Lower-mass systems go through a series of short star formation episodes, with no signs of mergers; their star formation activity starts relatively late ($zapprox 7$), and it is rapidly quenched by internal stellar feedback. In spite of the different evolutionary patterns, all satellites show a spherical morphology, with ancient and more metal-poor stars located towards the inner regions. All six dwarf satellites experienced high star formation rate ($rm >5,M_odot yr ^{-1}$) bursts, which can be detected by JWST while targeting high-$z$ LBGs.
The relation between nuclear ($lesssim$ 50 pc) star formation and nuclear galactic activity is still elusive: theoretical models predict a link between the two, but it is unclear whether active galactic nuclei (AGNs) should appear at the same time, before or after nuclear star formation activity is ongoing. We present a study of this relation in a complete, volume-limited sample of nine of the most luminous ($log L_{rm 14-195 keV} > 10^{42.5}$ erg/s) local AGNs (the LLAMA sample), including a sample of 18 inactive control galaxies (6 star-forming; 12 passive) that are matched by Hubble type, stellar mass (9.5 $lesssim$ log M_star/M_sun $lesssim$ 10.5), inclination and distance. This allows us to calibrate our methods on the control sample and perform a differential analysis between the AGN and control samples. We perform stellar population synthesis on VLT/X-SHOOTER spectra in an aperture corresponding to a physical radius of $approx$ 150 pc. We find young ($lesssim$ 30 Myr) stellar populations in seven out of nine AGNs and in four out of six star-forming control galaxies. In the non-star-forming control population, in contrast, only two out of twelve galaxies show such a population. We further show that these young populations are not indicative of ongoing star-formation, providing evidence for models that see AGN activity as a consequence of nuclear star formation. Based on the similar nuclear star-formation histories of AGNs and star-forming control galaxies, we speculate that the latter may turn into the former for some fraction of their time. Under this assumption, and making use of the volume-completeness of our sample, we infer that the AGN phase lasts for about 5 % of the nuclear starburst phase.
We use stellar population synthesis modeling to analyze the host galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z ~ 2 - 3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host galaxy properties. We compare AGN host galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and SFRs than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star-formation activity in star-forming galaxies at z ~ 2 - 3. We suggest that a correlation between M_BH and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا