Do you want to publish a course? Click here

Green-aware Mobile Edge Computing for IoT: Challenges, Solutions and Future Directions

62   0   0.0 ( 0 )
 Added by Minxian Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The development of Internet of Things (IoT) technology enables the rapid growth of connected smart devices and mobile applications. However, due to the constrained resources and limited battery capacity, there are bottlenecks when utilizing the smart devices. Mobile edge computing (MEC) offers an attractive paradigm to handle this challenge. In this work, we concentrate on the MEC application for IoT and deal with the energy saving objective via offloading workloads between cloud and edge. In this regard, we firstly identify the energy-related challenges in MEC. Then we present a green-aware framework for MEC to address the energy-related challenges, and provide a generic model formulation for the green MEC. We also discuss some state-of-the-art workloads offloading approaches to achieve green IoT and compare them in comprehensive perspectives. Finally, some future research directions related to energy efficiency in MEC are given.

rate research

Read More

As a key technology in the 5G era, Mobile Edge Computing (MEC) has developed rapidly in recent years. MEC aims to reduce the service delay of mobile users, while alleviating the processing pressure on the core network. MEC can be regarded as an extension of cloud computing on the user side, which can deploy edge servers and bring computing resources closer to mobile users, and provide more efficient interactions. However, due to the users dynamic mobility, the distance between the user and the edge server will change dynamically, which may cause fluctuations in Quality of Service (QoS). Therefore, when a mobile user moves in the MEC environment, certain approaches are needed to schedule services deployed on the edge server to ensure the user experience. In this paper, we model service scheduling in MEC scenarios and propose a delay-aware and mobility-aware service management approach based on concise probabilistic methods. This approach has low computational complexity and can effectively reduce service delay and migration costs. Furthermore, we conduct experiments by utilizing multiple realistic datasets and use iFogSim to evaluate the performance of the algorithm. The results show that our proposed approach can optimize the performance on service delay, with 8% to 20% improvement and reduce the migration cost by more than 75% compared with baselines during the rush hours.
Predictive analytics in Mobile Edge Computing (MEC) based Internet of Things (IoT) is becoming a high demand in many real-world applications. A prediction problem in an MEC-based IoT environment typically corresponds to a collection of tasks with each task solved in a specific MEC environment based on the data accumulated locally, which can be regarded as a Multi-task Learning (MTL) problem. However, the heterogeneity of the data (non-IIDness) accumulated across different MEC environments challenges the application of general MTL techniques in such a setting. Federated MTL (FMTL) has recently emerged as an attempt to address this issue. Besides FMTL, there exists another powerful but under-exploited distributed machine learning technique, called Network Lasso (NL), which is inherently related to FMTL but has its own unique features. In this paper, we made an in-depth evaluation and comparison of these two techniques on three distinct IoT datasets representing real-world application scenarios. Experimental results revealed that NL outperformed FMTL in MEC-based IoT environments in terms of both accuracy and computational efficiency.
With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively.
228 - Liya Xu , Mingzhu Ge , Weili Wu 2020
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently restricts the application of blockchain in mobile environment. However, edge computing can be utilized to solve the problem for insufficient computing power of mobile devices in IOT. Edge servers can recruit many mobile devices to contribute computing power together to mining and share the reward of mining with these recruited mobile devices. In this paper, we propose an incentivizing mechanism based on edge computing for mobile blockchain. We design a two-stage Stackelberg Game to jointly optimize the reward of edge servers and recruited mobile devices. The edge server as the leader sets the expected fee for the recruited mobile devices in Stage I. The mobile device as a follower provides its computing power to mine according to the expected fee in Stage. It proves that this game can obtain a uniqueness Nash Equilibrium solution under the same or different expected fee. In the simulation experiment, we obtain a result curve of the profit for the edge server with the different ratio between the computing power from the edge server and mobile devices. In addition, the proposed scheme has been compared with the MDG scheme for the profit of the edge server. The experimental results show that the profit of the proposed scheme is more than that of the MDG scheme under the same total computing power.
202 - Zhen Qin , Hai Wang , Yuben Qu 2021
By pushing computation, cache, and network control to the edge, mobile edge computing (MEC) is expected to play a leading role in fifth generation (5G) and future sixth generation (6G). Nevertheless, facing ubiquitous fast-growing computational demands, it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments (UEs). To address this issue, we propose an air-ground collaborative MEC (AGC-MEC) architecture in this article. The proposed AGC-MEC integrates all potentially available MEC servers within air and ground in the envisioned 6G, by a variety of collaborative ways to provide computation services at their best for UEs. Firstly, we introduce the AGC-MEC architecture and elaborate three typical use cases. Then, we discuss four main challenges in the AGC-MEC as well as their potential solutions. Next, we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy. Finally, we highlight several potential research directions of the AGC-MEC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا