Do you want to publish a course? Click here

Distributed Machine Learning for Predictive Analytics in Mobile Edge Computing Based IoT Environments

69   0   0.0 ( 0 )
 Added by Prabath Abeysekara
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Predictive analytics in Mobile Edge Computing (MEC) based Internet of Things (IoT) is becoming a high demand in many real-world applications. A prediction problem in an MEC-based IoT environment typically corresponds to a collection of tasks with each task solved in a specific MEC environment based on the data accumulated locally, which can be regarded as a Multi-task Learning (MTL) problem. However, the heterogeneity of the data (non-IIDness) accumulated across different MEC environments challenges the application of general MTL techniques in such a setting. Federated MTL (FMTL) has recently emerged as an attempt to address this issue. Besides FMTL, there exists another powerful but under-exploited distributed machine learning technique, called Network Lasso (NL), which is inherently related to FMTL but has its own unique features. In this paper, we made an in-depth evaluation and comparison of these two techniques on three distinct IoT datasets representing real-world application scenarios. Experimental results revealed that NL outperformed FMTL in MEC-based IoT environments in terms of both accuracy and computational efficiency.



rate research

Read More

228 - Liya Xu , Mingzhu Ge , Weili Wu 2020
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently restricts the application of blockchain in mobile environment. However, edge computing can be utilized to solve the problem for insufficient computing power of mobile devices in IOT. Edge servers can recruit many mobile devices to contribute computing power together to mining and share the reward of mining with these recruited mobile devices. In this paper, we propose an incentivizing mechanism based on edge computing for mobile blockchain. We design a two-stage Stackelberg Game to jointly optimize the reward of edge servers and recruited mobile devices. The edge server as the leader sets the expected fee for the recruited mobile devices in Stage I. The mobile device as a follower provides its computing power to mine according to the expected fee in Stage. It proves that this game can obtain a uniqueness Nash Equilibrium solution under the same or different expected fee. In the simulation experiment, we obtain a result curve of the profit for the edge server with the different ratio between the computing power from the edge server and mobile devices. In addition, the proposed scheme has been compared with the MDG scheme for the profit of the edge server. The experimental results show that the profit of the proposed scheme is more than that of the MDG scheme under the same total computing power.
The development of Internet of Things (IoT) technology enables the rapid growth of connected smart devices and mobile applications. However, due to the constrained resources and limited battery capacity, there are bottlenecks when utilizing the smart devices. Mobile edge computing (MEC) offers an attractive paradigm to handle this challenge. In this work, we concentrate on the MEC application for IoT and deal with the energy saving objective via offloading workloads between cloud and edge. In this regard, we firstly identify the energy-related challenges in MEC. Then we present a green-aware framework for MEC to address the energy-related challenges, and provide a generic model formulation for the green MEC. We also discuss some state-of-the-art workloads offloading approaches to achieve green IoT and compare them in comprehensive perspectives. Finally, some future research directions related to energy efficiency in MEC are given.
226 - Bingcong Li , Tianyi Chen , 2018
To accommodate heterogeneous tasks in Internet of Things (IoT), a new communication and computing paradigm termed mobile edge computing emerges that extends computing services from the cloud to edge, but at the same time exposes new challenges on security. The present paper studies online security-aware edge computing under jamming attacks. Leveraging online learning tools, novel algorithms abbreviated as SAVE-S and SAVE-A are developed to cope with the stochastic and adversarial forms of jamming, respectively. Without utilizing extra resources such as spectrum and transmission power to evade jamming attacks, SAVE-S and SAVE-A can select the most reliable server to offload computing tasks with minimal privacy and security concerns. It is analytically established that without any prior information on future jamming and server security risks, the proposed schemes can achieve ${cal O}big(sqrt{T}big)$ regret. Information sharing among devices can accelerate the security-aware computing tasks. Incorporating the information shared by other devices, SAVE-S and SAVE-A offer impressive improvements on the sublinear regret, which is guaranteed by what is termed value of cooperation. Effectiveness of the proposed schemes is tested on both synthetic and real datasets.
Fog/Edge computing model allows harnessing of resources in the proximity of the Internet of Things (IoT) devices to support various types of real-time IoT applications. However, due to the mobility of users and a wide range of IoT applications with different requirements, it is a challenging issue to satisfy these applications requirements. The execution of IoT applications exclusively on one fog/edge server may not be always feasible due to limited resources, while execution of IoT applications on different servers needs further collaboration among servers. Also, considering user mobility, some modules of each IoT application may require migration to other servers for execution, leading to service interruption and extra execution costs. In this article, we propose a new weighted cost model for hierarchical fog computing environments, in terms of the response time of IoT applications and energy consumption of IoT devices, to minimize the cost of running IoT applications and potential migrations. Besides, a distributed clustering technique is proposed to enable the collaborative execution of tasks, emitted from application modules, among servers. Also, we propose an application placement technique to minimize the overall cost of executing IoT applications on multiple servers in a distributed manner. Furthermore, a distributed migration management technique is proposed for the potential migration of applications modules to other remote servers as the users move along their path. Besides, failure recovery methods are embedded in the clustering, application placement, and migration management techniques to recover from unpredicted failures. The performance results show that our technique significantly improves its counterparts in terms of placement deployment time, average execution cost of tasks, total number of migrations, total number of interrupted tasks, and cumulative migration cost.
Extracting the valuable features and information in Big Data has become one of the important research issues in Data Science. In most Internet of Things (IoT) applications, the collected data are uncertain and imprecise due to sensor device variations or transmission errors. In addition, the sensing data may change as time evolves. We refer an uncertain data stream as a dataset that has velocity, veracity, and volume properties simultaneously. This paper employs the parallelism in edge computing environments to facilitate the top-k dominating query process over multiple uncertain IoT data streams. The challenges of this problem include how to quickly update the result for processing uncertainty and reduce the computation cost as well as provide highly accurate results. By referring to the related existing papers for certain data, we provide an effective probabilistic top-k dominating query process on uncertain data streams, which can be parallelized easily. After discussing the properties of the proposed approach, we validate our methods through the complexity analysis and extensive simulated experiments. In comparison with the existing works, the experimental results indicate that our method can improve almost 60% computation time, reduce nearly 20% communication cost between servers, and provide highly accurate results in most scenarios.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا