Do you want to publish a course? Click here

Multi-scale modeling of the effects of temperature, radiation flux and sink strength on point-defect and solute redistribution in dilute Fe-based alloys

57   0   0.0 ( 0 )
 Added by Liangzhao Huang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we investigate the radiation-induced segregation (RIS) resulting from the coupling between the atomic and point defect (PD) fluxes towards the structural defects of the microstructure. This flux coupling depends on the migration mechanisms of PDs and atoms, including thermal diffusion mechanisms and forced atomic relocations (FAR) occurring in displacement cascades. We derive an analytic model of the PD and solute RIS profiles accounting for PD production and mutual recombination, the FAR mechanism, and the overall sink strength of the microstructure controlling the elimination of PDs at structural defects. From this model, we present a parametric investigation of diffusion and RIS properties in dilute Fe-$B$ ($B$ = P, Mn, Cr, Si, Ni, and Cu) binary alloys, in the form of quantitative temperature/radiation flux/sink strength maps. As in previous works, we distinguish three kinetic domains for the diffusion and RIS properties: the recombination domain, the sink domain, and the thermal domain. Both our analytical approach and numerical applications demonstrate that the diffusion and RIS behaviors of PDs and solute atoms largely differ from one kinetic domain to another. Moreover, at high radiation flux, low temperature, and large sink strength, FARs tend to destroy the solute RIS profiles and therefore reduce the overall amount of RIS by forcing the mixing of solute and host atoms, especially close to PD sinks. Finally, we provide quantitative criteria to emulate in-reactor RIS behaviors by ion irradiation.

rate research

Read More

Radiation-induced segregation (RIS) of solutes in materials exposed to irradiation is a well-known problem. It affects the life-time of nuclear reactor core components by favouring radiation-induced degradation phenomena such as hardening and embrittlement. In this work, RIS tendencies in face-centered cubic (fcc) Ni-X (X = Cr, Fe, Ti, Mn, Si, P) dilute binary alloys are examined. The goal is to investigate the driving forces and kinetic mechanisms behind the experimentally observed segregation. By means of ab initio calculations, point-defect stabilities and interactions with solutes are determined, together with migration energies and attempt frequencies. Transport and diffusion coefficients are then calculated in a mean-field framework, to get a full picture of solute-defect kinetic coupling in the alloys. Results show that all solutes considered, with the exception of Cr, prefer vacancy-mediated over interstitial-mediated diffusion during both thermal and radiation-induced migration. Cr, on the other hand, preferentially migrates in a mixed-dumbbell configuration. P and Si are here shown to be enriched, and Fe and Mn to be depleted at sinks during irradiation of the material. Ti and Cr, on the other hand, display a crossover between enrichment at lower temperatures, and depletion in the higher temperature range. Results in this work are compared with previous studies in body-centered cubic (bcc) Fe, and discussed in the context of RIS in austenitic alloys.
We present the results of ab initio modeling of structure of dilute Ti-Fe, a typical representative of quenched Ti-based transition-metal alloys. We have demonstrated that beyond the solubility limit this alloy cannot be described in common terms of substitutional and interstitial alloys. Instead, very stable local clusters are formed in both low-temperature hcp and high-temperature bcc phases of alloys, with almost identical local structures. This gives an example of geometrically frustrated state and explains unusual concentration behavior of Mossbauer spectra discovered long ago for this system.
The present work examines the effect of alloying elements (denoted X) on the ideal shear strength for 26 dilute Ni-based alloys, Ni$_{11}$X, as determined by first-principles calculations of pure alias shear deformations. The variations in ideal shear strength are quantitatively explored with correlational analysis techniques, showing the importance of atomic properties such as size and electronegativity. The shear moduli of the alloys are affirmed to show a strong linear relationship with their ideal shear strengths, while the shear moduli of the individual alloying elements were not indicative of alloy shear strength. Through combination with available ideal shear strength data on Mg alloys, a potential application of the Ni alloy data is demonstrated in the search for a set of atomic features suitable for machine learning applications to mechanical properties. As another illustration, the predicted Ni ideal shear strengths play a key role in a predictive multiscale framework for deformation behavior of single crystal alloys at large strains as shown by the simulated stress-strain curves.
We calculate the sink strength of dislocations and toroidal absorbers using Object Kinetic Monte Carlo and compare with the theoretical expressions. We get good agreement for dislocations and loop-shaped absorbers of 3D migrating defects, provided that the volume fraction is low, and fair agreements for dislocations with 1D migrating defects. The master curve for the 3D to 1D transition is well reproduced with loop-shaped absorbers and fairly well with dislocations. We conclude that, on the one hand, the master curve is correct for a wide range of sinks and that, on the other, OKMC techniques inherently take correctly into account the strengths of sinks of any shape, provided that an effective way of appropriately inserting the sinks to be studied can be found.
A series of sigma-phase Fe_{100-x}V_x samples with 34.4 < x < 59.0 were investigated by neutron and X-ray diffraction and Mossbauer spectroscopy (MS) techniques. The first two methods were used for verification of the transformation from alpha to sigma phase and they also permitted to determine lattice parameters of the unit cell. With MS the Debye temperature, T_D, was evaluated from the temperature dependence of the centre shift, <CS>, assuming its entire temperature dependence originates from the second-order Doppler shift. To our best knowledge, it is the first ever-reported study on T_D in sigma-FeV alloys. Both attice parameters i.e. a and c were revealed to linearly increase with x. T_D shows, however, a non-monotonic behaviour as a function of composition with its extreme values between 425K for x=40 and 600K for x=59. A local maximum of 525K was found to exist at x=43.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا