Do you want to publish a course? Click here

Uncommon clustering in dilute Ti-Fe alloys

107   0   0.0 ( 0 )
 Added by Danil Bukhvalov W
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of ab initio modeling of structure of dilute Ti-Fe, a typical representative of quenched Ti-based transition-metal alloys. We have demonstrated that beyond the solubility limit this alloy cannot be described in common terms of substitutional and interstitial alloys. Instead, very stable local clusters are formed in both low-temperature hcp and high-temperature bcc phases of alloys, with almost identical local structures. This gives an example of geometrically frustrated state and explains unusual concentration behavior of Mossbauer spectra discovered long ago for this system.



rate research

Read More

The challenging problem of skew scattering for Hall effects in dilute ferromagnetic alloys, with intertwined effects of spin-orbit coupling, magnetism and impurity scattering, is studied here from first principles. Our main aim is to identify chemical trends and work out simple rules for large skew scattering in terms of the impurity and host states at the Fermi surface, with particular emphasis on the interplay of the spin and anomalous Hall effects in one and the same system. The predicted trends are benchmarked by referring to three different emph{ab initio} methods based on different approximations with respect to the electronic structure and transport properties.
For powder samples of CuAl$_{1-x}$Fe$_x$O$_2$ ($x =$ 0, 0.01, 0.05, and 0.1), measured optical properties are compared with model simulations and phonon spectra are compared with simulations based on weighted dynamical matrix approach.
Conduction and valence band states for the highly mismatched alloy (HMA) Ge:C are projected onto Ge crystal states, Ge vacancy states, and Ge/C atomic orbitals, revealing that substitutional carbon not only creates a direct bandgap, but the new conduction band is optically active. Overlap integrals of the new Ge:C conduction band with bands of pure Ge shows the new band has almost no Ge band character. C sites structurally mimic uncharged vacancies in the Ge lattice, similar to Hjalmarsons model for other HMAs. C perturbs the entire Ge band structure even at the deepest crystal core energy levels. Projection onto atomic sites shows relatively weak localization compared with other HMAs, but does show a strong anisotropy in probability distribution. L-valley conduction band states in Ge are ruled out as major contributors to the carbon state in Ge:C, both by weak inner products between these states and by a negligible effect on optical transition strength when adding C.
We present results on the identification of phase transitions in ferrimagnetic GdFeCo alloys using machine learning. The approach for finding phase transitions in the system is based on the `learning by confusion scheme, which allows one to characterize phase transitions using a universal $W$-shape. By applying the `learning by confusion scheme, we obtain 2D $W$-a shaped surface that characterizes a triple phase transition point of the GdFeCo alloy. We demonstrate that our results are in the perfect agreement with the procedure of the numerical minimization of the thermodynamical potential, yet our machine-learning-based scheme has the potential to provide a speedup in the task of the phase transition identification.
Formation energy of the sigma-phase in the Fe-V alloy system, Delta E, was computed in the full compositional range of its occurrence (34 < x < 60) using the electronic band structure calculations by means of the KKR method. Delta E-values were found to strongly depend on the Fe concentration, also its variation with different site occupancies was characteristic of a given lattice site. Calculated magnetic and configuration entropy contributions were used to determine sublattice occupancies for various compositions and temperatures. The results agree well with those obtained from neutron diffraction measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا