Do you want to publish a course? Click here

The quest for planets around subdwarfs and white dwarfs from Kepler space telescope fields: Part I. Techniques and tests of the methods

180   0   0.0 ( 0 )
 Added by Jurek Krzesinski
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we independently test the presence of an exoplanet around the binary KIC 9472174, which is composed of a red dwarf and a pulsating type B subdwarf. We also present the results of our search for Jupiter-mass objects orbiting near to the eclipsing binary KIC 7975824, which is composed of a white dwarf and type B subdwarf, and the pulsating white dwarf KIC 8626021. The goal is to test analytical techniques and prepare the ground for a larger search for possible substellar survivors on tight orbits around post-common envelope binaries and stars at the end of their evolution, that is, extended horizontal branch stars and white dwarfs. We, therefore, mainly focus on substellar bodies orbiting these stars within the range of the hosts former red-giant or asymptotic-giant phase envelopes. Due to the methods we use, the quest is restricted to single-pulsating type B subdwarf and white dwarf stars and short-period eclipsing binaries containing a white dwarf or a subdwarf component. Results. Based on the three objects studied in this paper, we demonstrate that these methods can be used to detect giant exoplanets orbiting around pulsating white dwarf or type B subdwarf stars as well as short-period binary systems, at distances which fall within the range of the former red-giant envelope of a single star or the common envelope of a binary. Using our analysis techniques, we reject the existence of a Jupiter-mass exoplanet around the binary KIC 9472174 at the distance and orbital period previously suggested in the literature. We also found that the eclipse timing variations observed in the binary might depend on the reduction and processing of the Kepler data. The other two objects analyzed in this work do not have Jupiter mass exoplanets orbiting within 0.7 - 1.4 AU from them, or larger-mass objects on closer orbits (the given mass limits are minimum masses).



rate research

Read More

Context. Hot subdwarfs experienced strong mass loss on the Red Giant Branch (RGB) and are now hot and small He-burning objects. Aims. In this project we aim to perform a transit survey in all available light curves of hot subdwarfs from space-based telescopes (Kepler, K2, TESS, and CHEOPS), with our custom-made pipeline SHERLOCK, in order to determine the occurrence rate of planets around these stars, as a function of orbital period and planetary radius. Methods. In this first paper, we perform injection-and-recovery tests of synthetic transits for a selection of representative Kepler, K2 and TESS light curves, to determine which transiting bodies, in terms of object radius and orbital period, we will be able to detect with our tools. We also provide such estimates for CHEOPS data, which we analyze with the pycheops package. Results. Transiting objects with a radius $lesssim$ 1.0 $R_{Earth}$ can be detected in most of Kepler, K2 and CHEOPS targets for the shortest orbital periods (1 d and below), reaching values as small as $sim$0.3 $R_{Earth}$ in the best cases. Reaching sub-Earth-sized bodies is achieved only for the brightest TESS targets, and the ones observed during a significant number of sectors. We also give a series of representative results for farther and bigger planets, for which the performances strongly depend on the target magnitude, the length and the quality of the data. Conclusions. The TESS sample will provide the most important statistics for the global aim of measuring the planet occurrence rate around hot subdwarfs. The Kepler, K2 and CHEOPS data will allow us to search for planetary remnants, i.e. very close and small (possibly disintegrating) objects, which would have partly survived the engulfment in their red giant host.
The presence of a close, low-mass companion is thought to play a substantial and perhaps necessary role in shaping post-Asymptotic Giant Branch and Planetary Nebula outflows. During post-main-sequence evolution, radial expansion of the primary star, accompanied by intense winds, can significantly alter the binary orbit via tidal dissipation and mass loss. To investigate this, we couple stellar evolution models (from the zero-age main-sequence through the end of the post-main sequence) to a tidal evolution code. The binarys fate is determined by the initial masses of the primary and the companion, the initial orbit (taken to be circular), and the Reimers mass-loss parameter. For a range of these parameters, we determine whether the orbit expands due to mass loss or decays due to tidal torques. Where a common envelope (CE) phase ensues, we estimate the final orbital separation based on the energy required to unbind the envelope. These calculations predict period gaps for planetary and brown dwarf companions to white dwarfs. The upper end of the gap is the shortest period at which a CE phase is avoided. The lower end is the longest period at which companions survive their CE phase. For binary systems with 1 $M_odot$ progenitors, we predict no Jupiter-mass companions with periods $lesssim$270 days. Once engulfed, Jupiter-mass companions do not survive a CE phase. For binary systems consisting of a 1 $M_odot$ progenitor with a companion 10 times the mass of Jupiter, we predict a period gap between $sim$0.1 and $sim$380 days. These results are consistent with both the detection of a $sim$50 $M_{rm J}$ brown dwarf in a $sim$0.003 AU ($sim$0.08 day) orbit around the white dwarf WD 0137-349 and the tentative detection of a $sim$2 $M_{rm J}$ planet in a $gtrsim$2.7 AU ($gtrsim$4 year) orbit around the white dwarf GD66.
Only a small number of exoplanets has been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its NICMOS instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (45 pc) Hyades cluster. The observations were obtained with NIC1 in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations >0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main sequence masses were >2.8 Msun, was found. Comparison with evolutionary models yields detection limits of 5 to 7 Jupiter masses according to one model, and between 9 and 12 Mjup according to another model, at physical separations corresponding to initial semimajor axis of >5 to 8 A.U. (i.e., before the mass loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar disks, and their transformation into giant planets (with m>6 Mjup and a>6 A.U.). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than about 3 Msun.
Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the Continuous Habitable Zone (CHZ) for ~8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf is 10^2 (10^4) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow reveal the presence of a planet atmosphere, providing a first characterisation. Planets in the CHZ of a 0.6 M_sun white dwarf will be distorted by Roche geometry, and a Kepler-11d analogue would overfill its Roche lobe. With current facilities a Super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known cool white dwarf. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.
Infrared excesses around white dwarf stars indicate the presence of various astrophysical objects of interest, including companions and debris disks. In this second paper of a series, we present follow-up observations of infrared excess candidates from Gaia and unWISE discussed in the first paper, Paper I. We report space-based infrared photometry at 3.6 and 4.5 micron for 174 white dwarfs from the Spitzer Space Telescope and ground-based near-infrared J, H, and K photometry of 235 white dwarfs from Gemini Observatory with significant overlap between Spitzer and Gemini observations. This data is used to confirm or rule-out the observed unWISE infrared excess. From the unWISE-selected candidate sample, the most promising infrared excess sample comes from both colour and flux excess, which has a Spitzer confirmation rate of 95%. We also discuss a method to distinguish infrared excess caused by stellar or sub-stellar companions from potential dust disks. In total, we confirm the infrared excess around 61 white dwarfs, 10 of which are likely to be stellar companions. The remaining 51 bright white dwarf with infrared excess beyond two microns has the potential to double the known sample of white dwarfs with dusty exoplanetary debris disks. Follow-up high-resolution spectroscopic studies of a fraction of confirmed excess white dwarfs in this sample have discovered emission from gaseous dust disks. Additional investigations will be able to expand the parameter space from which dust disks around white dwarfs are found.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا