Do you want to publish a course? Click here

Infrared Excesses around Bright White Dwarfs from Gaia and unWISE. II

62   0   0.0 ( 0 )
 Added by Samuel Lai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Infrared excesses around white dwarf stars indicate the presence of various astrophysical objects of interest, including companions and debris disks. In this second paper of a series, we present follow-up observations of infrared excess candidates from Gaia and unWISE discussed in the first paper, Paper I. We report space-based infrared photometry at 3.6 and 4.5 micron for 174 white dwarfs from the Spitzer Space Telescope and ground-based near-infrared J, H, and K photometry of 235 white dwarfs from Gemini Observatory with significant overlap between Spitzer and Gemini observations. This data is used to confirm or rule-out the observed unWISE infrared excess. From the unWISE-selected candidate sample, the most promising infrared excess sample comes from both colour and flux excess, which has a Spitzer confirmation rate of 95%. We also discuss a method to distinguish infrared excess caused by stellar or sub-stellar companions from potential dust disks. In total, we confirm the infrared excess around 61 white dwarfs, 10 of which are likely to be stellar companions. The remaining 51 bright white dwarf with infrared excess beyond two microns has the potential to double the known sample of white dwarfs with dusty exoplanetary debris disks. Follow-up high-resolution spectroscopic studies of a fraction of confirmed excess white dwarfs in this sample have discovered emission from gaseous dust disks. Additional investigations will be able to expand the parameter space from which dust disks around white dwarfs are found.



rate research

Read More

115 - Y.-H. Chu 2010
IR excesses of white dwarfs (WDs) can be used to diagnose the presence of low-mass companions, planets, and circumstellar dust. Using different combinations of wavelengths and WD temperatures, circumstellar dust at different radial distances can be surveyed. The Spitzer Space Telescope has been used to search for IR excesses of white dwarfs. Two types of circumstellar dust disks have been found: (1) small disks around cool WDs with T_eff < 20,000 K, and (1) large disks around hot WDs with T_eff > 100,000 K. The small dust disks are within the Roche limit, and are commonly accepted to have originated from tidally crushed asteroids. The large dust disks, at tens of AU from the central WDs, have been suggested to be produced by increased collisions among Kuiper Belt-like objects. In this paper, we discuss Spitzer IRAC surveys of small dust disks around cool WDs, a MIPS survey of large dust disks around hot WDs, and an archival Spitzer survey of IR excesses of WDs.
With the launch of the {em Wide-field Infrared Survey Explorer} ({em WISE}), a new era of detecting planetary debris and brown dwarfs around white dwarfs (WDs) has begun with the {em WISE} InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD Catalog between the {em WISE}, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From $sim18,000$ input targets, there are {em WISE} detections comprising 344 naked WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+brown dwarf (BD) systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and {em WISE} photometry. Some of these detections could be the result of contaminating sources within the large ($approx6arcsec$) {em WISE} point spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates, and provide notes for each target-of-interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the {em WISE} photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.
White dwarfs are routinely observed to have polluted atmospheres, and sometimes significant infrared excesses, that indicate ongoing accretion of circumstellar dust and rocky debris. Typically this debris is assumed to be in the form of a (circular) disc, and to originate from asteroids that passed close enough to the white dwarf to be pulled apart by tides. However, theoretical considerations suggest that the circularisation of the debris, which initially occupies highly eccentric orbits, is very slow. We therefore hypothesise that the observations may be readily explained by the debris remaining on highly eccentric orbits, and we explore the properties of such debris. For the generic case of an asteroid originating at several au from the white dwarf, we find that all of the tidal debris is always bound to the white dwarf and that the orbital energy distribution of the debris is narrow enough that it executes similar elliptical orbits with only a narrow spread. Assuming that the tidal field of the white dwarf is sufficient to minimise the effects of self-gravity and collisions within the debris, we estimate the time over which the debris spreads into a single elliptical ring, and we generate toy spectra and lightcurves from the initial disruption to late times when the debris distribution is essentially time steady. Finally we speculate on the connection between these simple considerations and the observed properties of these systems, and on additional physical processes that may change this simple picture.
Effective temperatures and luminosities are calculated for 1,475,921 Tycho-2 and 107,145 Hipparcos stars, based on distances from Gaia Data Release 1. Parameters are derived by comparing multi-wavelength archival photometry to BT-Settl model atmospheres. The 1-sigma uncertainties for the Tycho-2 and Hipparcos stars are +/-137 K and +/-125 K in temperature and +/-35 per cent and +/-19 per cent in luminosity. The luminosity uncertainty is dominated by that of the Gaia parallax. Evidence for infrared excess between 4.6 and 25 microns is found for 4256 stars, of which 1883 are strong candidates. These include asymptotic giant branch (AGB) stars, Cepheids, Herbig Ae/Be stars, young stellar objects, and other sources. We briefly demonstrate the capabilities of this dataset by exploring local interstellar extinction, the onset of dust production in AGB stars, the age and metallicity gradients of the solar neighbourhood and structure within the Gould Belt. We close by discussing the potential impact of future Gaia data releases.
We analyse the 100pc Gaia white dwarf volume-limited sample by means of VOSA (Virtual Observatory SED Analyser) with the aim of identifying candidates for displaying infrared excesses. Our search focuses on the study of the spectral energy distribution (SED) of 3,733 white dwarfs with reliable infrared photometry and GBP-GRP colours below 0.8 mag, a sample which seems to be nearly representative of the overall white dwarf population. Our search results in 77 selected candidates, 52 of which are new identifications. For each target we apply a two-component SED fitting implemented in VOSA to derive the effective temperatures of both the white dwarf and the object causing the excess. We calculate a fraction of infrared-excess white dwarfs due to the presence of a circumstellar disk of 1.6+-0.2%, a value which increases to 2.6+-0.3% if we take into account incompleteness issues. Our results are in agreement with the drop in the percentage of infrared excess detections for cool (<8,000K) and hot (>20,000K) white dwarfs obtained in previous analyses. The fraction of white dwarfs with brown dwarf companions we derive is ~0.1-0.2%.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا