Do you want to publish a course? Click here

Search for giant planets around seven white dwarfs in the Hyades cluster with the Hubble Space Telescope

64   0   0.0 ( 0 )
 Added by Wolfgang Brandner
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Only a small number of exoplanets has been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its NICMOS instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (45 pc) Hyades cluster. The observations were obtained with NIC1 in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations >0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main sequence masses were >2.8 Msun, was found. Comparison with evolutionary models yields detection limits of 5 to 7 Jupiter masses according to one model, and between 9 and 12 Mjup according to another model, at physical separations corresponding to initial semimajor axis of >5 to 8 A.U. (i.e., before the mass loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar disks, and their transformation into giant planets (with m>6 Mjup and a>6 A.U.). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than about 3 Msun.



rate research

Read More

144 - Thierry Forveille 2010
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961. The latter is, by over a factor of two, the most massive planet found by radial velocity monitoring of an M dwarf, but its being found around an early M-dwarf is in approximate line with the upper envelope of the planetary vs stellar mass diagram. HIP 12961 ([Fe/H]=-0.07) is slightly more metal-rich than the average solar neighborhood ([Fe/H]=-0.17), and Gl 676A ([Fe/H=0.18) significantly so. The two stars together therefore reinforce the growing trend for giant planets being more frequent around more metal-rich M dwarfs, and the 5~Jupiter mass Gl 676Ab being found around a metal-rich star is consistent with the expectation that the most massive planets preferentially form in disks with large condensate masses.
93 - S. Friedrich 2006
For the last three years we have performed a survey for young (<3 Gyrs) giant planets around nearby white dwarfs with HST, Spitzer, and VLT. Direct HST/NICMOS imaging of the seven white dwarfs in the Hyades gave no evidence for companions down to about 10 Jupiter masses and separations larger than 0.5 arcsec (about 25 AU), while VLT/NACO observations revealed a putative companion to a field white dwarf. Second epoch observations with SINFONI on the VLT, however, showed that it is most probably a background star. With IRAC on Spitzer we also found no indications of cool, very low mass companions in our sample of field white dwarfs. The implications of these non-detections are briefly discussed.
With the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope, we have discovered in M4 (NGC 6121, C 1620-264) the first extensive sequence of cooling white dwarfs seen in a globular cluster. Adopting a distance modulus of (m-M)_V = 12.65 and a reddening of E(B-V) = 0.37, we show that the sequence, which extends over 9 < M_U < 13, is comprised of white dwarfs of mass sim 0.5 M_{odot}. The total mass loss from the present turnoff to the white dwarf sequence is 0.31 M_{odot} and the intrinsic dispersion in the mean mass appears to be < 0.05 M_{odot}. Both the location of the white dwarf cooling sequence in the cluster color-magnitude diagram and the cumulative luminosity function attest to the basic correctness and completeness of the physics in theoretical models for the upper three magnitudes of the observed white dwarf cooling sequence. To test the theory in globular clusters at cooling ages beyond sim 3 times 10^8 years will require deeper and more complete data.
131 - S. Xu , Z. Wahhaj (1 2015
CONTEXT. Little is known about the planetary systems around single white dwarfs although there is strong evidence that they do exist. AIMS. We performed a pilot study with the extreme-AO system on the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the Very Large Telescopes (VLT) to look for giant planets around a young white dwarf, GD 50. METHODS. We were awarded science verification time on the new ESO instrument SPHERE. Observations were made with the InfraRed Dual-band Imager and Spectrograph in classical imaging mode in H band. RESULTS. Despite the faintness of the target (14.2 mag in R band), the AO loop was closed and a strehl of 37% was reached in H band. No objects were detected around GD 50. We achieved a 5-sigma contrast of 6.2, 8.0 and 8.25 mags at 0{farcs}2, 0{farcs}4 and 0{farcs}6 and beyond, respectively. We exclude any substellar objects more massive than 4.0 M$_textrm{J}$ at 6.2 AU, 2.9 M$_textrm{J}$ at 12.4 AU and 2.8 M$_textrm{J}$ at 18.6 AU and beyond. This rivals the previous upper limit set by Spitzer. We further show that SPHERE is the most promising instrument available to search for close-in substellar objects around nearby white dwarfs.
222 - David S. Spiegel , 2010
There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an objects mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of deuterium. Here, we investigate various deuterium-burning masses for a range of models. We find that, while 13 M_J is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an objects initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the objects mass is ~(13.0 +/- 0.8)M_J, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity, 10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of initial deuterium burned).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا