Do you want to publish a course? Click here

A multi-view approach for Mandarin non-native mispronunciation verification

127   0   0.0 ( 0 )
 Added by Zhenyu Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Traditionally, the performance of non-native mispronunciation verification systems relied on effective phone-level labelling of non-native corpora. In this study, a multi-view approach is proposed to incorporate discriminative feature representations which requires less annotation for non-native mispronunciation verification of Mandarin. Here, models are jointly learned to embed acoustic sequence and multi-source information for speech attributes and bottleneck features. Bidirectional LSTM embedding models with contrastive losses are used to map acoustic sequences and multi-source information into fixed-dimensional embeddings. The distance between acoustic embeddings is taken as the similarity between phones. Accordingly, examples of mispronounced phones are expected to have a small similarity score with their canonical pronunciations. The approach shows improvement over GOP-based approach by +11.23% and single-view approach by +1.47% in diagnostic accuracy for a mispronunciation verification task.



rate research

Read More

A common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result in a significant amount of false mispronunciation alarms. We propose a novel approach to overcome this problem based on two principles: a) taking into account uncertainty in the automatic phoneme recognition step, b) accounting for the fact that there may be multiple valid pronunciations. We evaluate the model on non-native (L2) English speech of German, Italian and Polish speakers, where it is shown to increase the precision of detecting mispronunciations by up to 18% (relative) compared to the common approach.
In this work, we introduce metric learning (ML) to enhance the deep embedding learning for text-independent speaker verification (SV). Specifically, the deep speaker embedding network is trained with conventional cross entropy loss and auxiliary pair-based ML loss function. For the auxiliary ML task, training samples of a mini-batch are first arranged into pairs, then positive and negative pairs are selected and weighted through their own and relative similarities, and finally the auxiliary ML loss is calculated by the similarity of the selected pairs. To evaluate the proposed method, we conduct experiments on the Speaker in the Wild (SITW) dataset. The results demonstrate the effectiveness of the proposed method.
110 - Zhan Zhang , Yuehai Wang , 2021
Computer-Assisted Pronunciation Training (CAPT) plays an important role in language learning. However, conventional CAPT methods cannot effectively use non-native utterances for supervised training because the ground truth pronunciation needs expensive annotation. Meanwhile, certain undefined nonnative phonemes cannot be correctly classified into standard phonemes. To solve these problems, we use the vector-quantized variational autoencoder (VQ-VAE) to encode the speech into discrete acoustic units in a self-supervised manner. Based on these units, we propose a novel method that integrates both discriminative and generative models. The proposed method can detect mispronunciation and generate the correct pronunciation at the same time. Experiments on the L2-Arctic dataset show that the detection F1 score is improved by 9.58% relatively compared with recognition-based methods. The proposed method also achieves a comparable word error rate (WER) and the best style preservation for mispronunciation correction compared with text-to-speech (TTS) methods.
This paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically derives optimal syllable-level representation from frame-level and phoneme-level audio features. Training this model is challenging because of the limited amount of incorrect stress patterns. To solve this problem, we propose to augment the training set with incorrectly stressed words generated with Neural TTS. Combining both techniques achieves 94.8% precision and 49.2% recall for the detection of incorrectly stressed words in L2 English speech of Slavic and Baltic speakers.
The goal of this paper is text-independent speaker verification where utterances come from in the wild videos and may contain irrelevant signal. While speaker verification is naturally a pair-wise problem, existing methods to produce the speaker embeddings are instance-wise. In this paper, we propose Cross Attentive Pooling (CAP) that utilizes the context information across the reference-query pair to generate utterance-level embeddings that contain the most discriminative information for the pair-wise matching problem. Experiments are performed on the VoxCeleb dataset in which our method outperforms comparable pooling strategies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا