Do you want to publish a course? Click here

Multi-task Metric Learning for Text-independent Speaker Verification

144   0   0.0 ( 0 )
 Added by Yafeng Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this work, we introduce metric learning (ML) to enhance the deep embedding learning for text-independent speaker verification (SV). Specifically, the deep speaker embedding network is trained with conventional cross entropy loss and auxiliary pair-based ML loss function. For the auxiliary ML task, training samples of a mini-batch are first arranged into pairs, then positive and negative pairs are selected and weighted through their own and relative similarities, and finally the auxiliary ML loss is calculated by the similarity of the selected pairs. To evaluate the proposed method, we conduct experiments on the Speaker in the Wild (SITW) dataset. The results demonstrate the effectiveness of the proposed method.



rate research

Read More

Speaker verification (SV) systems using deep neural network embeddings, so-called the x-vector systems, are becoming popular due to its good performance superior to the i-vector systems. The fusion of these systems provides improved performance benefiting both from the discriminatively trained x-vectors and generative i-vectors capturing distinct speaker characteristics. In this paper, we propose a novel method to include the complementary information of i-vector and x-vector, that is called generative x-vector. The generative x-vector utilizes a transformation model learned from the i-vector and x-vector representations of the background data. Canonical correlation analysis is applied to derive this transformation model, which is later used to transform the standard x-vectors of the enrollment and test segments to the corresponding generative x-vectors. The SV experiments performed on the NIST SRE 2010 dataset demonstrate that the system using generative x-vectors provides considerably better performance than the baseline i-vector and x-vector systems. Furthermore, the generative x-vectors outperform the fusion of i-vector and x-vector systems for long-duration utterances, while yielding comparable results for short-duration utterances.
Multi-task learning (MTL) and attention mechanism have been proven to effectively extract robust acoustic features for various speech-related tasks in noisy environments. In this study, we propose an attention-based MTL (ATM) approach that integrates MTL and the attention-weighting mechanism to simultaneously realize a multi-model learning structure that performs speech enhancement (SE) and speaker identification (SI). The proposed ATM system consists of three parts: SE, SI, and attention-Net (AttNet). The SE part is composed of a long-short-term memory (LSTM) model, and a deep neural network (DNN) model is used to develop the SI and AttNet parts. The overall ATM system first extracts the representative features and then enhances the speech signals in LSTM-SE and specifies speaker identity in DNN-SI. The AttNet computes weights based on DNN-SI to prepare better representative features for LSTM-SE. We tested the proposed ATM system on Taiwan Mandarin hearing in noise test sentences. The evaluation results confirmed that the proposed system can effectively enhance speech quality and intelligibility of a given noisy input. Moreover, the accuracy of the SI can also be notably improved by using the proposed ATM system.
Speaker embeddings become growing popular in the text-independent speaker verification task. In this paper, we propose two improvements during the training stage. The improvements are both based on triplet cause the training stage and the evaluation stage of the baseline x-vector system focus on different aims. Firstly, we introduce triplet loss for optimizing the Euclidean distances between embeddings while minimizing the multi-class cross entropy loss. Secondly, we design an embedding similarity measurement network for controlling the similarity between the two selected embeddings. We further jointly train the two new methods with the original network and achieve state-of-the-art. The multi-task training synergies are shown with a 9% reduction equal error rate (EER) and detected cost function (DCF) on the 2016 NIST Speaker Recognition Evaluation (SRE) Test Set.
Learning a good speaker embedding is important for many automatic speaker recognition tasks, including verification, identification and diarization. The embeddings learned by softmax are not discriminative enough for open-set verification tasks. Angular based embedding learning target can achieve such discriminativeness by optimizing angular distance and adding margin penalty. We apply several different popular angular margin embedding learning strategies in this work and explicitly compare their performance on Voxceleb speaker recognition dataset. Observing the fact that encouraging inter-class separability is important when applying angular based embedding learning, we propose an exclusive inter-class regularization as a complement for angular based loss. We verify the effectiveness of these methods for learning a discriminative embedding space on ASV task with several experiments. These methods together, we manage to achieve an impressive result with 16.5% improvement on equal error rate (EER) and 18.2% improvement on minimum detection cost function comparing with baseline softmax systems.
96 - Yafeng Chen , Wu Guo , Bin Gu 2021
Meta-learning (ML) has recently become a research hotspot in speaker verification (SV). We introduce two methods to improve the meta-learning training for SV in this paper. For the first method, a backbone embedding network is first jointly trained with the conventional cross entropy loss and prototypical networks (PN) loss. Then, inspired by speaker adaptive training in speech recognition, additional transformation coefficients are trained with only the PN loss. The transformation coefficients are used to modify the original backbone embedding network in the x-vector extraction process. Furthermore, the random erasing (RE) data augmentation technique is applied to all support samples in each episode to construct positive pairs, and a contrastive loss between the augmented and the original support samples is added to the objective in model training. Experiments are carried out on the Speaker in the Wild (SITW) and VOiCES databases. Both of the methods can obtain consistent improvements over existing meta-learning training frameworks. By combining these two methods, we can observe further improvements on these two databases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا