Do you want to publish a course? Click here

Reconstruction of attosecond beating by interference of two-photon transitions in bulk solids

166   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) is one of the most widely used techniques for resolving ultrafast electronic dynamics in atomic and molecular systems. As it relies on the interference of photo-electrons in vacuum, similar interference has never been contemplated in the bulk of crystals. Here we show that the interference of two-photon transitions can be recorded directly in the bulk of solids and read out with standard angle-resolved photo-emission spectroscopy. The phase of the RABBIT beating in the photoelectron spectra coming from the bulk of solids is sensitive to the relative phase of the Berry connection between bands and it experiences a shift of $pi$ as one of the quantum paths crosses a band. For resonant interband transitions, the amplitude of the RABBIT oscillation decays as the pump and probe pulses are separated in time due to electronic decoherence, providing a simple interferometric method to extract dephasing times.



rate research

Read More

We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the $pi$ jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.
The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasiparticles called excitons. The manipulation of these hydrogen-like quasi-particles in dielectrics, has received great interest under the name excitonics that is expected to be of great potential for a variety of applications, including optoelectronics and photonics. A crucial step for such exploitation of excitons in advanced technological applications is a detailed understanding of their dynamical nature. However, the ultrafast processes unfolding on few-femtosecond and attosecond time scales, of primary relevance in view of the desired extension of electronic devices towards the petahertz regime, remain largely unexplored. Here we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF$_2$ single crystals. With our unique setup, we can access absolute phase delays which allow for an unambiguous comparison with theoretical calculations based on the Wannier-Mott model. Our results show that excitons surprisingly exhibit a dual atomic- and solid-like character which manifests itself on different time scales. While the former is responsible for a femtosecond optical Stark effect, the latter dominates the attosecond excitonic response and originates by the interaction with the crystal. Further investigation of the role of exciton localization proves that the bulk character persists also for strongly localised quasi-particles and allows us to envision a new route to control exciton dynamics in the close-to-petahertz regime.
The interaction between light and metal nanoparticles enables investigations of microscopic phenomena on nanometer length and ultrashort time scales, benefiting from strong confinement and enhancement of the optical field. However, the ultrafast dynamics of these nanoparticles are primarily investigated by multiphoton photoluminescence on picoseconds or photoemission on femtoseconds independently. Here, we presented two-photon photoluminescence (TPPL) measurements on individual Au nanobipyramids (AuNP) to reveal their ultrafast dynamics by two-pulse excitation on a global time scale ranging from sub-femtosecond to tens of picoseconds. Two-orders-of-magnitude photoluminescence enhancement, namely super interference fringes, has been demonstrated on tens of femtoseconds. Power-dependent measurements uncovered the transform of the nonlinearity from 1 to 2 when the interpulse delay varied from tens of femtoseconds to tens of picoseconds. We proved that the real intermediate state plays a critical role in the observed phenomena, supported by numerical simulations with a three eigenstates model and further experiments on Au nanospheres with different diameters. The crucial parameters, including the dephasing time, the radiative rate, and the coupling between different states, have been estimated using numerical simulations. Our results provide insight into the role of intermediate states in the ultrafast dynamics of noble metal nanoparticles. The giant photoluminescence in super interference fringes enables potential practical applications in imaging, sensing, and nanophotonics.
Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconductor physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface.
An electrical pulse E(t) is completely defined by its time-dependent amplitude and polarisation direction. For optical pulses the manipulation and characterisation of the light polarisation state is fundamental due to its relevance in several scientific and technological fields. In this work we demonstrate the complete temporal reconstruction of the electric field of few-cycle pulses with a complex time-dependent polarisation. Our experimental approach is based on extreme ultraviolet interferometry with isolated attosecond pulses and on the demonstration that the motion of an attosecond electron wave packet is sensitive to perturbing fields only along the direction of its motion. By exploiting the sensitivity of interferometric techniques and by controlling the emission and acceleration direction of the wave packet, pulses with energies as low as few hundreds of nanojoules can be reconstructed. Our approach opens the possibility to completely characterise the electric field of the pulses typically used in visible pump-probe spectroscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا