No Arabic abstract
The interaction between light and metal nanoparticles enables investigations of microscopic phenomena on nanometer length and ultrashort time scales, benefiting from strong confinement and enhancement of the optical field. However, the ultrafast dynamics of these nanoparticles are primarily investigated by multiphoton photoluminescence on picoseconds or photoemission on femtoseconds independently. Here, we presented two-photon photoluminescence (TPPL) measurements on individual Au nanobipyramids (AuNP) to reveal their ultrafast dynamics by two-pulse excitation on a global time scale ranging from sub-femtosecond to tens of picoseconds. Two-orders-of-magnitude photoluminescence enhancement, namely super interference fringes, has been demonstrated on tens of femtoseconds. Power-dependent measurements uncovered the transform of the nonlinearity from 1 to 2 when the interpulse delay varied from tens of femtoseconds to tens of picoseconds. We proved that the real intermediate state plays a critical role in the observed phenomena, supported by numerical simulations with a three eigenstates model and further experiments on Au nanospheres with different diameters. The crucial parameters, including the dephasing time, the radiative rate, and the coupling between different states, have been estimated using numerical simulations. Our results provide insight into the role of intermediate states in the ultrafast dynamics of noble metal nanoparticles. The giant photoluminescence in super interference fringes enables potential practical applications in imaging, sensing, and nanophotonics.
Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase superresolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.
The reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) is one of the most widely used techniques for resolving ultrafast electronic dynamics in atomic and molecular systems. As it relies on the interference of photo-electrons in vacuum, similar interference has never been contemplated in the bulk of crystals. Here we show that the interference of two-photon transitions can be recorded directly in the bulk of solids and read out with standard angle-resolved photo-emission spectroscopy. The phase of the RABBIT beating in the photoelectron spectra coming from the bulk of solids is sensitive to the relative phase of the Berry connection between bands and it experiences a shift of $pi$ as one of the quantum paths crosses a band. For resonant interband transitions, the amplitude of the RABBIT oscillation decays as the pump and probe pulses are separated in time due to electronic decoherence, providing a simple interferometric method to extract dephasing times.
Long-term observations of photoluminescence at the single-molecule level were until recently very diffcult, due to the photobleaching of organic ?uorophore molecules. Although inorganic semiconductor nanocrystals can overcome this diffculty showing very low photobleaching yield, they suffer from photoblinking. A new marker has been recently introduced, relying on diamond nanoparticles containing photoluminescent color centers. In this work we compare the photoluminescence of single quantum dots (QDs) to the one of nanodiamonds containing a single-color center. Contrary to other markers, photoluminescent nanodiamonds present a perfect photostability and no photoblinking. At saturation of their excitation, nanodiamonds photoluminescence intensity is only three times smaller than the one of QDs. Moreover, the bright and stable photoluminescence of nanodiamonds allows wide field observations of single nanoparticles motion. We demonstrate the possibility of recording the tra jectory of such single particle in culture cells.
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far-field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line-shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
As a high-order quantum transition, two-photon emission has an extremely low occurrence rate compared to one-photon emission, thus having been considered a forbidden process. Here, we propose a scheme that allows ultrafast two-photon emission, leveraging highly confined surface plasmon polariton modes in a degenerately-doped, light-emitting semiconductor thin film. The surface plasmon polariton modes are tailored to have simultaneous spectral and spatial overlap with the two-photon emission in the semiconductor. Using degenerately-doped InSb as the prototype material, we show that the two-photon emission can be accelerated by 10 orders of magnitude: from tens of milliseconds to picoseconds, surpassing the one-photon emission rate. Our result provides a semiconductor platform for ultrafast single and entangled photon generation, with a tunable emission wavelength in the mid-infrared.