No Arabic abstract
This article develops a novel approach to the representation of singular integral operators of Calderon-Zygmund type in terms of continuous model operators, in both the classical and the bi-parametric setting. The representation is realized as a finite sum of averages of wavelet projections of either cancellative or noncancellative type, which are themselves Calderon-Zygmund operators. Both properties are out of reach for the established dyadic-probabilistic technique. Unlike their dyadic counterparts, our representation reflects the additional kernel smoothness of the operator being analyzed. Our representation formulas lead naturally to a new family of $T(1)$ theorems on weighted Sobolev spaces whose smoothness index is naturally related to kernel smoothness. In the one parameter case, we obtain the Sobolev space analogue of the $A_2$ theorem; that is, sharp dependence of the Sobolev norm of $T$ on the weight characteristic is obtained in the full range of exponents. In the bi-parametric setting, where local average sparse domination is not generally available, we obtain quantitative $A_p$ estimates which are best known, and sharp in the range $max{p,p}geq 3$ for the fully cancellative case.
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{n-1}$, $T_{Omega}$ be the convolution singular integral operator with kernel $frac{Omega(x)}{|x|^n}$. For $bin{rm BMO}(mathbb{R}^n)$, let $T_{Omega,,b}$ be the commutator of $T_{Omega}$. In this paper, by establishing suitable sparse dominations, the authors establish some weak type endpoint estimates of $Llog L$ type for $T_{Omega,,b}$ when $Omegain L^q(S^{n-1})$ for some $qin (1,,infty]$.
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$, $T_{Omega}$ be the homogeneous singular integral operator with kernel $frac{Omega(x)}{|x|^d}$ and $T_{Omega,,b}$ be the commutator of $T_{Omega}$ with symbol $b$. In this paper, we prove that if $Omegain L(log L)^2(S^{d-1})$, then for $bin {rm BMO}(mathbb{R}^d)$, $T_{Omega,,b}$ satisfies an endpoint estimate of $Llog L$ type.
We represent a bilinear Calderon-Zygmund operator at a given smoothness level as a finite sum of cancellative, complexity zero operators, involving smooth wavelet forms, and continuous paraproduct forms. This representation results in a sparse $T(1)$-type bound, which in turn yields directly new sharp weighted bilinear estimates on Lebesgue and Sobolev spaces. Moreover, we apply the representation theorem to study fractional differentiation of bilinear operators, establishing Leibniz-type rules in weighted Sobolev spaces which are new even in the simplest case of the pointwise product.
Let $Pin Bbb Q_p[x,y]$, $sin Bbb C$ with sufficiently large real part, and consider the integral operator $ (A_{P,s}f)(y):=frac{1}{1-p^{-1}}int_{Bbb Z_p}|P(x,y)|^sf(x) |dx| $ on $L^2(Bbb Z_p)$. We show that if $P$ is homogeneous then for each character $chi$ of $Bbb Z_p^times$ the characteristic function $det(1-uA_{P,s,chi})$ of the restriction $A_{P,s,chi}$ of $A_{P,s}$ to the eigenspace $L^2(Bbb Z_p)_chi$ is the $q$-Wronskian of a set of solutions of a (possibly confluent) $q$-hypergeometric equation. In particular, the nonzero eigenvalues of $A_{P,s,chi}$ are the reciprocals of the zeros of such $q$-Wronskian.
We establish $L^2$ boundedness of all nice parabolic singular integrals on Good Parabolic Graphs, aka {em regular} Lip(1,1/2) graphs. The novelty here is that we include non-homogeneous kernels, which are relevant to the theory of parabolic uniform rectifiability. Previously, the third named author had treated the case of homogeneous kernels. The present proof combines the methods of that work (which in turn was based on methods described in Christs CBMS lecture notes), with the techniques of Coifman-David-Meyer. This is a very preliminary draft. Eventually, these results will be part of a more extensive work on parabolic uniform rectifiability and singular integrals.