No Arabic abstract
Enhancement cavities where a beam of large size (several millimeters) can resonate have several applications, in particular in atomic physics. However, reaching large beam waists in a compact geometry (less than a meter long) typically brings the resonator close to the degeneracy limit. Here we experimentally study a degenerate optical cavity, 44-cm long and consisting of two flat mirrors placed in the focal planes of a lens, in a regime of intermediate finesse ($sim 150$). We study the impact of the longitudinal misalignement on the optical gain, for different input beam waists up to 5.6~mm, and find data consistent with the prediction of a model based on ABCD propagation of Gaussian beams. We reach an optical gain of 26 for a waist of 1.4~mm, which can have an impact on several applications, in particular atom interferometry. We numerically investigate the optical gain reduction for large beam waists using the angular spectrum method to consider the effects of optical aberrations, which play an important role in such a degenerate cavity. Our calculations quantitatively reproduce the experimental data and will provide a key tool for designing enhancement cavities close to the degeneracy limit. As an illustration, we discuss the application of this resonator geometry to the enhancement of laser beams with top-hat intensity profiles.
The frequency stability of lasers is limited by thermal noise in state-of-the-art frequency references. Further improvement requires operation at cryogenic temperature. In this context, we investigate a fiber-based ring resonator. Our system exhibits a first-order temperature-insensitive point around $3.55$ K, much lower than that of crystalline silicon. The observed low sensitivity with respect to vibrations ($<5cdot{10^{-11}},text{m}^{-1} text{s}^{2}$), temperature ($-22(1)cdot{10^{-9}},text{K}^{-2}$) and pressure changes ($4.2(2)cdot{10^{-11}},text{mbar}^{-2}$) makes our approach promising for future precision experiments.
We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm a strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature $geq 5,$nm at $800,$nm laser wavelength), we obtain field enhancement factors of up to ${sim}35$ for Au and ${sim}12$ for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.
Over the last decade, optical atomic clocks have surpassed their microwave counterparts and now offer the ability to measure time with an increase in precision of two orders of magnitude or more. This performance increase is compelling not only for enabling new science, such as geodetic measurements of the earth, searches for dark matter, and investigations into possible long-term variations of fundamental physics constants but also for revolutionizing existing technology, such as the global positioning system (GPS). A significant remaining challenge is to transition these optical clocks to non-laboratory environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics. Here, using a compact stimulated Brillouin scattering (SBS) laser to interrogate a $^8$$^8$Sr$^+$ ion, we demonstrate a promising component of a portable optical atomic clock architecture. In order to bring the stability of the SBS laser to a level suitable for clock operation, we utilize a self-referencing technique to compensate for temperature drift of the laser to within $170$ nK. Our SBS optical clock achieves a short-term stability of $3.9 times 10^{-14}$ at $1$ s---an order of magnitude improvement over state-of-the-art microwave clocks. Based on this technology, a future GPS employing portable SBS clocks offers the potential for distance measurements with a 100-fold increase in resolution.
We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency, the quadrupole oscillator strength, and their enhancement factors. In the example of a rubidium-87 atom, we study the dependencies of the quadrupole Rabi frequency on the quantum numbers of the transition, the mode type, the phase circulation direction, the propagation direction, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find that the root-mean-square (rms) quadrupole Rabi frequency reduces quickly but the quadrupole oscillator strength varies slowly with increasing radial distance. We show that the enhancement factors of the rms Rabi frequency and the oscillator strength do not depend on any characteristics of the internal atomic states except for the atomic transition frequency. The enhancement factor of the oscillator strength can be significant even when the atom is far away from the fiber. We show that, in the case where the atom is positioned on the fiber surface, the oscillator strength for the quasicircularly polarized fundamental mode HE$_{11}$ has a local minimum at the fiber radius $asimeq 107$ nm, and is larger than that for quasicircularly polarized higher-order hybrid modes, TE modes, and TM modes in the region $a<498.2$ nm.
An experimental method is developed for the robust frequency stabilization using a high-finesse cavity when the laser exhibits large intermittent frequency jumps. This is accomplished by applying an additional slow feedback signal from Doppler-free fluorescence spectroscopy in an atomic beam with increased frequency locking range. As a result, a stable and narrow-linewidth 556 nm laser maintains the frequency lock status for more than a week, and contributes to more accurate evaluation of the Yb optical lattice clock. In addition, the reference optical cavity is supported at vibration-insensitive points without any vibration isolation table, making the laser setup more simple and compact.