Do you want to publish a course? Click here

Robust frequency stabilization and linewidth narrowing of a laser with large intermittent frequency jumps using an optical cavity and an atomic beam

172   0   0.0 ( 0 )
 Added by Won-Kyu Lee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An experimental method is developed for the robust frequency stabilization using a high-finesse cavity when the laser exhibits large intermittent frequency jumps. This is accomplished by applying an additional slow feedback signal from Doppler-free fluorescence spectroscopy in an atomic beam with increased frequency locking range. As a result, a stable and narrow-linewidth 556 nm laser maintains the frequency lock status for more than a week, and contributes to more accurate evaluation of the Yb optical lattice clock. In addition, the reference optical cavity is supported at vibration-insensitive points without any vibration isolation table, making the laser setup more simple and compact.



rate research

Read More

126 - Ralf Kohlhaas 2011
We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a strong robustness against large disturbances up to high frequencies. We demonstrate that serrodyne frequency shifting reaches a higher correction bandwidth and lower relative frequency noise level compared to a standard acousto-optical modulator based scheme. Our results allow to consider promising applications in the absolute frequency stabilization of lasers on optical cavities.
We stabilize the idler frequency of a singly-resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-Perot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump laser or the resonant signal frequency. A residual relative frequency noise power spectral density below 10$^3$ Hz$^2$/Hz is reached, with a Gaussian linewidth of 920 Hz over 100 ms, which demonstrates the potential for reaching spectral purity down to the Hz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.
We demonstrate a compact and robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multi-cavity block is employed, and, for each laser, the sideband locking technique is applied. Useful features of the system are a negligible lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral atom lattice clock. The device significantly supports and improves the operation of the clock. The laser with the most stringent requirements imposed by this application is stabilized to a linewidth of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.
We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 1E-14, comparable to the stability achievable with a fiber laser (FL) locked to a FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 1E-19 relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations.
We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic coherence (dipole oscillations) as a phase memory of the transmitting laser field. A preliminary experiment using a distributed feedback laser diode and a rubidium vapor cell demonstrates a shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This method would improve the performance of gas-cell-based optical atomic clocks and magnetometers and facilitate laser-cooling experiments using narrow transitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا