Do you want to publish a course? Click here

On the origin of the controversial electrostatic field effect in superconductors

146   0   0.0 ( 0 )
 Added by Sergey Kafanov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In semiconductor electronics, the field-effect refers to the control of electrical conductivity in nanoscale devices, which underpins the field-effect transistor, one of the cornerstones of present-day semiconductor technology. The effect is enabled by the penetration of the electric field far into a weakly doped semiconductor, whose charge density is not sufficient to screen the field. On the contrary, the charge density in metals and superconductors is so large that the field decays exponentially from the surface and can penetrate only a short distance into the material. Hence, the field-effect should not exist in such materials. Nonetheless, recent publications have reported observation of the field-effect in superconductors and proximised normal metal nanodevices. The effect was discovered in gated nanoscale superconducting constrictions as a suppression of the critical current under the application of intense electric field and interpreted in terms of an electric-field induced perturbation propagating inside the superconducting film. Here we show that ours, and previously reported observations, governed by the overheating of the constriction, without recourse to novel physics. The origin of the overheating is a leakage current between the gate and the constriction, which perfectly follows the Fowler-Nordheim model of electron field emission from a metal electrode.c`

rate research

Read More

225 - G. Tkachov 2018
In noncentrosymmetric superconductors (NCSs), the conversion of a charge current into spin magnetization - the so called magnetoelectric effect - is the direct indicator of the unconventional, mixed-parity order parameter. This paper proposes a scheme to detect the magnetoelectric effect by anomalous, equal-spin Andreev tunneling in NCS/ferromagnet contacts. The proposal relies on the ability to generate spin-polarized triplet pairing by passing an electric current through an NCS. Such an induced triplet pairing bears a similarity to the paradigmatic nonunitary pairing in triplet superfluids with a complex vector order parameter ${bf d}$. The qualitative difference is that the induced nonunitary state can be realised in NCSs with a purely real ${bf d}$ by breaking the time-reversal symmetry in current-biased setups. This offers a possibility to access the unconventional superconductivity in NCSs through electrical transport measurements.
We compare electronic structures of single FeSe layer films on SrTiO$_3$ substrate (FeSe/STO) and K$_x$Fe$_{2-y}$Se$_{2}$ superconductors obtained from extensive LDA and LDA+DMFT calculations with the results of ARPES experiments. It is demonstrated that correlation effects on Fe-3d states are sufficient in principle to explain the formation of the shallow electron -- like bands at the M(X)-point. However, in FeSe/STO these effects alone are apparently insufficient for the simultaneous elimination of the hole -- like Fermi surface around the $Gamma$-point which is not observed in ARPES experiments. Detailed comparison of ARPES detected and calculated quasiparticle bands shows reasonable agreement between theory and experiment. Analysis of the bands with respect to their origin and orbital composition shows, that for FeSe/STO system the experimentally observed replica quasiparticle band at the M-point (usually attributed to forward scattering interactions with optical phonons in SrTiO$_3$ substrate) can be reasonably understood just as the LDA calculated Fe-3d$_{xy}$ band, renormalized by electronic correlations. The only manifestation of the substrate reduces to lifting the degeneracy between Fe-3d$_{xz}$ and Fe-3d$_{yz}$ bands in the vicinity of M-point. For the case of K$_x$Fe$_{2-y}$Se$_{2}$ most bands observed in ARPES can also be understood as correlation renormalized Fe-3d LDA calculated bands, with overall semi -- quantitative agreement with LDA+DMFT calculations.
The magnetic field is shown to affect significantly non-equilibrium quasiparticle (QP) distributions under conditions of inverse proximity effect on the remarkable example of a single-electron hybrid turnstile. This effect suppresses the gap in the superconducting leads in the vicinity of turnstile junctions with a Coulomb blockaded island, thus, trapping hot QPs in this region. Applied magnetic field creates additional QP traps in the form of vortices or regions with reduced superconducting gap in the leads resulting in release of QPs away from junctions. We present clear experimental evidence of such interplay of the inverse proximity effect and a magnetic field revealing itself in the superconducting gap enhancement in a magnetic field as well as in significant improvement of the turnstile characteristics. The observed interplay of the inverse proximity effect and external magnetic field, and its theoretical explanation in the context of QP overheating are important for various superconducting and hybrid nanoelectronic devices, which find applications in quantum computation, photon detection and quantum metrology.
Despite metals are believed to be insensitive to field-effect and conventional Bardeen-Cooper-Schrieffer (BCS) theories predict the electric field to be ineffective on conventional superconductors, a number of gating experiments showed the possibility of modulating the conductivity of metallic thin films and the critical temperature of conventional superconductors. All these experimental features have been explained by simple charge accumulation/depletion. In 2018, electric field control of supercurrent in conventional metallic superconductors has been demonstrated in a range of electric fields where the induced variation of charge carrier concentration in metals is negligibly small. In fact, no changes of normal state resistance and superconducting critical temperature were reported. Here, we review the experimental results obtained in the realization of field-effect metallic superconducting devices exploiting this unexplained phenomenon. We will start by presenting the seminal results on superconducting BCS wires and nano-constriction Josephson junctions (Dayem bridges) made of different materials, such as titanium, aluminum and vanadium. Then, we show the mastering of the Josephson supercurrent in superconductor-normal metal-superconductor proximity transistors suggesting that the presence of induced superconducting correlations are enough to see this unconventional field-effect. Later, we present the control of the interference pattern in a superconducting quantum interference device indicating the coupling of the electric field with thesuperconducting phase. Among the possible applications of the presented phenomenology, we conclude this review by proposing some devices that may represent a breakthrough in superconducting quantum and classical computation.
169 - I. S. Burmistrov 2020
We report a complete analytical expression for the one-loop correction to the ac conductivity $sigma(omega)$ of a disordered two-dimensional electron system in the diffusive regime. The obtained expression includes the weak localization and Altshuler-Aronov corrections as well as the corrections due to superconducting fluctuations above superconducting transition temperature. The derived expression has no $1/(iomega)$ divergency in the static limit, $omegato 0$, in agreement with general expectations for the normal state conductivity of a disordered electron system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا